INTERNATIONAL STANDARD

ISO 13885-1

Second edition 2008-08-01

Binders for paints and varnishes — Gel permeation chromatography (GPC) —

Part 1: **Tetrahydrofuran (THF) as eluent**

Liants pour peintures et vernis — Chromatographie par perméation de iTeh STAND PREVIEW
Partie 1: Utilisation de tétrahydrofurane (THF) comme éluant (standards.iteh.ai)

ISO 13885-1:2008 https://standards.iteh.ai/catalog/standards/sist/c6846ae8-b9e4-45aa-b07f-39549b6dffic8/iso-13885-1-2008

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 13885-1:2008 https://standards.iteh.ai/catalog/standards/sist/c6846ae8-b9e4-45aa-b07f-39549b6dffic8/iso-13885-1-2008

COPYRIGHT PROTECTED DOCUMENT

© ISO 2008

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents

Page

Forewo	ord	. iv
1	Scope	1
2	Normative references	1
3	Terms and definitions	2
4	Principle	2
5	Apparatus	2
5.1 5.2	General	
5.2 5.3	Pump	
5.4	Injection system	3
5.5 5.6	Columns Column temperature control	
5.7	Detector	4
5.8	Data acquisition	
6	Eluent	5
7	Calibration of the apparatus	5
7.1 7.2	General (standards:itch:ai) Specification for the calibration standard	5 5
7.3	Preparation of the calibration solutions for injection	6
7.4 7.5	Preparation of the calibration solutions for injection Conditions for calibration runs ISO 13885-12008 Measurement of retention volume/timedards/sist/c6846ae8-b9e4-45aa-b07f-	7
7.6	Plotting the calibration curve 549b6dffc8/iso-13885-1-2008	7
8	Sampling	7
9	Preparation for the test	8
9.1	Preparation of the injection solution	
9.2	Preparation of the apparatus	
10	Conditions of analysis	
11 11.1	Data acquisition and evaluationGeneral	
11.2	Calculation of the net chromatogram from the raw data	9
11.3	Calculation of the average values	
11.4	Calculation of the distribution curves	
12 12.1	PrecisionGeneral	12
12.2	Repeatability	12
12.3	Reproducibility	12
13	Test report	
13.1 13.2	General data on the equipment and settings	
13.3	Special data on the sample	
Annex A (normative) Calculation of experimental parameters for different column sizes 17		
Annex	Annex B (informative) Example of a data sheet for a polymer standard	
Annex	Annex C (informative) Further information	
Bibliog	Bibliography2	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 13885-1 was prepared by Technical Committee ISO/TC 35, *Paints and varnishes*, Subcommittee SC 10, *Test methods for binders for paints and varnishes*.

This second edition cancels and replaces the first edition (ISO 13885-1:1998), which has been technically revised. In particular, the method has been brought into line with the current state of the art, especially as far as the software used is concerned, and the procedure for the manual evaluation of the results has been deleted.

ISO 13885-1:2008

ISO 13885 consists of the following parts; under the general title binders for paints and varnishes — Gel permeation chromatography (GPC): 39549b6dffc8/iso-13885-1-2008

— Part 1: Tetrahydrofuran (THF) as eluent

Binders for paints and varnishes — Gel permeation chromatography (GPC) —

Part 1:

Tetrahydrofuran (THF) as eluent

WARNING — This part of ISO 13885 may involve hazardous materials, operations or equipment. It does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions. A specific hazard statement appears in Clause 6.

1 Scope

This part of ISO 13885 describes the determination of the molar-mass distribution, number-average molar mass $M_{\rm n}$ and mass-average molar mass $M_{\rm w}$ of polymers that are soluble in THF (tetrahydrofuran) by gel permeation chromatography (GPC) Γ AND ARD Γ

It is possible that, in spite of the good repeatability obtained with this method, it cannot be used with certain polymer types because of specific interactions, such as adsorption within the sample/eluent/column system.

The method is not an absolute one and requires calibration with commercially available unbranched-polystyrene standards that have been characterized by absolute methods. The results for samples of polymers other than polystyrene are therefore only comparable within groups of samples of the same type.

The conditions specified in this part of ISO 13885 are not suitable for the GPC analysis of polymer samples with $M_{\rm w}$ values greater than 10⁶ (see Annex C).

No correction methods, e.g. for the elimination of peak broadening, are included in this part of ISO 13885. If absolute molar-mass values are required, an absolute method, e.g. membrane osmometry for $M_{\rm n}$ or light scattering for $M_{\rm w}$, must be used.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1513, Paints and varnishes — Examination and preparation of samples for testing

ISO 5725-1, Accuracy (trueness and precision) of measurement methods and results — Part 1: General principles and definitions

ISO 15528, Paints, varnishes and raw materials for paints and varnishes — Sampling

_

¹⁾ Also known as size exclusion chromatography (SEC).

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

gel permeation chromatography

chromatographic method in which the completely dissolved molecules of a polymer sample are fractionated on a porous column material, separation taking place according to the size of the molecule (or, more precisely, the size of the polymer coil which forms in this elution solvent)

NOTE 1 Small molecules diffuse into the pores of the column material more frequently and are therefore retarded more than large molecules. Thus large molecules are eluted earlier, small molecules later. Under the test conditions given, the retention volume is solely a function of the size of the molecule.

NOTE 2 This is a special form of liquid chromatography.

4 Principle

The polymer content of a sample is determined, the sample is then diluted with eluent to give a concentration of less than 5 g/l and an aliquot of the diluted sample is injected into the GPC system. The concentration of the molecules eluted from the column is measured in order of decreasing coil size with a concentration-sensitive detector, typically a differential refractometer. The molar-mass distribution, the quantities $M_{\rm n}$ and $M_{\rm w}$ and the heterogeneity or polydispersity $M_{\rm w}/M_{\rm n}$ are calculated from the resultant chromatogram with the aid of a calibration curve that has been determined for the particular GPC system.

HEN STANDARD PRE

5 Apparatus

(standards.iteh.ai)

5.1 General

ISO 13885-1:2008

https://standards.iteh.ai/catalog/standards/sist/c6846ae8-b9e4-45aa-b07f-

The apparatus shall consist of the components shown in Figure 1, which are described below.

It is essential that all components which come into contact with the eluent or the sample solution are resistant to them and do not exhibit adsorption or memory effects in any form. The individual components of the GPC apparatus, which in this case uses THF as eluent, shall be linked with stainless-steel or titanium capillary tubes.

5.2 Eluent supply

The eluent reservoir shall provide the eluent with adequate protection against external influences such as the atmosphere and light, if necessary by means of a blanket of inert gas over the surface of the liquid. The eluent reservoir shall have sufficient capacity to permit equilibrium to be established between the elution solvent and the surface of the column material and several analyses to be conducted.

The eluent shall be degassed, either before it is introduced into the reservoir or by use of a device fitted between the reservoir and the pump, to prevent malfunctions of the pump or the formation of bubbles in the detector. The method of degassing used, e.g. bubble trap, online purging with helium, or vacuum degassing, is open to choice.

5.3 Pump

The pump ensures that the eluent flow through the column is as smooth and pulse-free as possible. The flow rate shall be 1 ml/min (see, however, Annex A). The maximum permitted variation in the flow rate is 0,1 %. To fulfil these requirements, the pump shall operate at optimum efficiency at this flow rate.

5.4 Injection system

The injection system serves to introduce a predetermined, precise amount of the sample solution into the eluent stream in a rapid and smooth fashion.

When filling the sample loop with sample solution and subsequently introducing the sample solution into the eluent stream, the volume of liquid used shall be great enough to ensure that, even if laminar-flow effects occur, the sample loop is completely filled with the sample solution and subsequently completely flushed out.

Memory effects from the previous sample solution in the injection system shall be avoided by suitable design or by adequate flushing.

5.5 Columns

The apparatus shall have one or more columns connected in series and packed with spherical porous material, the diameter of the pores corresponding to the size of the polymer molecules being analysed.

The packing material typically consists of a styrene/divinylbenzene (S/DVB) copolymer, produced by a special polymerization process, which swells only slightly in the solvent and therefore will not normally deform under the pressure developed at the flow rate used.

In addition to these macroporous spherical S/DVB particles, packing materials based on other organic monomers or on silicon dioxide (silica) are also used. The criterion for their use is that no adsorptive interaction shall occur between their surface and the polymer molecules in the sample. Furthermore, the sample being analysed shall not be changed, either chemically or structurally, within the chromatographic system.

Certain polymers can interact with the surface of the packing material, e.g. by adsorption, and other effects can sometimes interfere with the GPC separation mechanism. Details of such effects and notes on possible remedies are discussed in Annex C. If it is intended to compare analyses by different laboratories of such polymers, the laboratories shall agree on details of the test conditions that are not covered by this part of ISO 13885. https://standards.iteh.ai/catalog/standards/sist/c6846ae8-b9e4-45aa-b07f-

39549b6dffc8/iso-13885-1-2008

One of the objectives of this part of ISO 13885 is to ensure that results obtained in different laboratories using different GPC apparatus for the same sample agree as well as possible. In order to meet this objective, it is necessary to adhere to the minimum requirements specified below with regard to peak broadening (expressed in terms of a number of theoretical plates) and separation performance.

a) Number of theoretical plates

The number of theoretical plates N shall be determined, for the apparatus used, from the peak width at half height (see Figure 2). Inject 20 μ l of a solution of ethylbenzene (concentration 1 g/l) on to the column (see Annex A) and evaluate the chromatogram obtained under the same conditions as are used for analysing polymers, according to the following equation:

$$N = 5,54 \times \left(\frac{V_{\rm e}}{W_{1/2}}\right)^2 \times \frac{100}{L} \tag{1}$$

where

 $V_{\rm p}$ is the retention volume to the peak maximum;

 $W_{1/2}$ is the peak width at half height (see Figure 2) — use the same units for V_e and W;

L is the length, in cm, of the column/column system.

Express the result as the number of theoretical plates per metre of total column length. To meet the requirements of this part of ISO 13885, the column system shall have at least 20 000 plates/m.

Consult Annex C with regard to tailing and fronting (asymmetry) of the peak used to calculate the plate count.

b) Separation performance

To ensure adequate resolution, the $\log_{10}M$ versus retention volume $V_{\rm e}$ calibration curve for the column system used shall not exceed a specified gradient. This parameter should preferably be measured using a pair of polystyrene standards which elute in the area of the peak maximum for the polymer sample under investigation or be determined from the calibration curve and evaluated as

$$\frac{V_{e, M_x} - V_{e, (10 \times M_x)}}{A_c} > 6,0$$
 (2)

where

 V_{e, M_x} is the retention volume for polystyrene of molar mass M_x , in cm³;

 $V_{\rm e.~(10\times M_{\odot})}$ is the retention volume for 10 times that molar mass, in cm³;

 $A_{\rm c}$ is the cross-sectional area of the column, in cm².

Select M_{χ} such that the peak maximum for the polymer sample under investigation lies approximately halfway between these two retention volumes.

5.6 Column temperature control

Carry out the test at room temperature (15 °C to 35 °C) or at a higher temperature up to a maximum of 40 °C. The temperature of the column shall not change by more than 1 °C during the analysis (see Annex C).

5.7 Detector

(standards.iteh.ai)

Use a differential refractometer detector. The cell volume shall not exceed 0,010 ml (see Annex A).

https://standards.iteh.ai/catalog/standards/sist/c6846ae8-b9e4-45aa-b07f-

NOTE 1 For the reasons for permitting only a single type of detector, see Annex C.

If samples consisting of copolymers or polymer blends are to be analysed, ensure that all the components give a similar response factor (ratio of detector signal to concentration of analyte in the eluate or, in the case of the differential refractometer, specific refractive index increment ν (usually expressed as dn/dc), i.e. mathematically:

$$0,2 \leqslant \frac{k_i}{k_j} \leqslant 5 \tag{3}$$

where

 k_i and k_i are the response factors for components i and j, respectively;

dn/dc is the change in the refractive index *n* related to the change of the concentration *c*.

If the ratio of the response factors does not fall within this range in the analysis of a set of samples, a different detector or combination of detectors may be used. If it is intended to compare the results obtained by different laboratories for such a set of samples, the type of detector shall be agreed upon. If a different detector is used, the reasons for using it shall be stated in the test report (see also Annex C).

The detector response obtained using the sample loadings specified in this part of ISO 13885 shall, at the lowest setting for electronic damping, exhibit a noise level of less than 1 % of the maximum height of the polymer peak. As the noise level is influenced by variations in pressure, temperature and flow rate, particularly in the differential refractometer, suitable measures shall be taken to maintain a constant temperature and to damp out pulses.

5.8 Data acquisition

The signals from the detector are recorded by means of an electronic data-acquisition system (see Clause 11 for details).

6 Eluent

The eluent shall consist of tetrahydrofuran (THF) with the following specification:

- assay > 99,5 %;
- water < 0,05 %;</p>
- peroxides < 0,005 %.</p>

It may be stabilized with up to a maximum of 250 ppm of 2,6-di-tert-butyl-4-methylphenol to prevent the formation of peroxides.

The peroxide level in the tetrahydrofuran shall be checked before use, e.g. with test strips.

WARNING — THF is highly flammable. The user of this part of ISO 13885 should refer to appropriate safe-handling procedures.

In exceptional cases, which shall be explained in the test report, it may be necessary to incorporate additives in the THF eluent, up to a maximum/of 10 g/l, to avoid problems in the analysis of certain samples (see Annex C for details).

(standards.iteh.ai)

Discard the eluent after using it to condition the column and for the actual analyses, and do not return it to the eluent reservoir.

ISO 13885-1:2008

https://standards.iteh.ai/catalog/standards/sist/c6846ae8-b9e4-45aa-b07f-39549b6dffic8/iso-13885-1-2008

7 Calibration of the apparatus

7.1 General

Calibrate the GPC apparatus with a series of unbranched-polystyrene standards of narrow molecular-mass distribution (see Annex C) whose molar masses have been determined by independent, absolute methods. The result is a calibration curve for the evaluation of GPC analyses of polystyrene samples. If this calibration curve is used to analyse samples of other compositions, containing molecules with other structures, the results shall be expressed as the "polystyrene-equivalent molar mass" [1].

7.2 Specification for the calibration standard

The molar-mass distribution of the standard shall be narrower than the limits given below as a function of the peak-maximum molar mass M_p :

$$M_{
m p}$$
 < 2 000 g/mol $M_{
m W}/M_{
m n} \leqslant$ 1,20 2 000 g/mol $\leqslant M_{
m p}$ < 10⁶ g/mol $M_{
m W}/M_{
m n} \leqslant$ 1,05 $M_{
m W}/M_{
m n} \leqslant$ 1,20 $M_{
m W}/M_{
m n} \leqslant$ 1,20

The peak-asymmetry factor A/B for each chromatogram, calculated from the peak half-widths A and B at half height before and after the perpendicular through the peak maximum, shall lie in the range

$$\frac{A}{R} = 1,00 \pm 0,15 \tag{4}$$

The half-widths A and B shall be determined from electronically acquired data on peaks defined by at least 60 data points.

The following minimum requirements shall be fulfilled in the characterization of each individual polystyrene standard used for calibration:

- a) At least one average molar-mass value, $M_{\rm n}$, $M_{\rm w}$ or $M_{\rm z}$ (see equations in 11.3), shall be determined by an absolute method. The $M_{\rm p}$ -values are used for calibration, but there is no absolute method of determining $M_{\rm p}$, therefore the procedure for determining the $M_{\rm p}$ -values (e.g. calculation by $M_{\rm n}$ and $M_{\rm w}$ or iterative GPC calibration, starting with the $M_{\rm w}$ -values associated with the peak maximum and recalculating $M_{\rm w}$) must be specified in the data sheet of the standard.
- b) At least one method shall be used to determine the molar-mass distribution.
- c) All the parameters involved in these methods and used in the calculations shall be stated in the test report.
- d) The results and data for each batch analysed shall be presented in a form that will enable the data to be re-evaluated by the user.

NOTE An example of a data sheet of this type is given in Annex B.

Should the calibration standards give a shoulder on either side of the peak, pre-peaks or a tailing peak, the area represented by these anomalies shall be less than 2,0 % of the peak area, otherwise the calibration standard shall be rejected.

iTeh STANDARD PREVIEW

Hexylbenzene (M = 162) shall be used as the standard with the lowest molar mass on the calibration curve.

(standards.iteh.ai)

If the calibration standards in the low-molecular range are separated so well that the peaks of the individual oligomers can be recognized, their actual molar mass including the terminal groups, shall be used in the calculations.

https://standards.iteh.ai/catalog/standards/sist/c6846ae8-b9e4-45aa-b07f-

39549b6dffc8/iso-13885-1-2008

7.3 Preparation of the calibration solutions for injection

Shake the calibration standards in the eluent at room temperature, and store at room temperature.

Filter the solutions manually through a 0,45 µm membrane filter. If the filter shows signs of blocking, the solution is unsuitable for calibration purposes.

The solutions shall be used within 48 h.

Several calibration standards may be injected and analysed at the same time, as long as all the peaks are separated down to the baseline.

The concentration of the individual calibration standards in the injection solution, as a function of the peak-maximum molar mass, shall be

$$M_{\rm p} < 50~000~{\rm g/mol}$$
 1,0 g/l

50 000 g/mol
$$\leq M_{\rm p} < 10^6$$
 g/mol 0,5 g/l

$$10^6 \text{ g/mol} \leqslant M_{\text{p}} \qquad \qquad 0,1 \text{ g/l}$$

The quantities injected on to the column shall be matched to the capacity of the column by adjusting the injection volume, and not the concentration. The injection volumes determined in accordance with the requirements of Clause 10 shall be used both in calibration runs and in sample analyses.

7.4 Conditions for calibration runs

The conditions for a calibration run shall, with the exception of the concentration of the injection solutions, be identical to those for the sample analyses.

7.5 Measurement of retention volume/time

The retention volume $V_{\rm e}$ or retention time $t_{\rm R}$ shall be measured from the start of injection to the point on the baseline at which the peak reaches its maximum height. In determining this point, a baseline drift of 5 % of the peak height, measured from injection to after the impurity peaks, is acceptable. If the drift is greater or the baseline is unsteady in the area of the peak, the analysis shall be repeated.

The retention time can be measured and checked against an internal standard and, if necessary, a correction made.

7.6 Plotting the calibration curve

The calibration curve shall be plotted with $\log_{10} M_{\rm p}$ as the ordinate and the retention volume $V_{\rm e}$ or retention time (or corrected retention time) $t_{\rm R}$ as abscissa. At least two calibration points shall be measured per decade of molar mass and there shall be at least five calibration points altogether. In the low molar mass range, the calibration curve shall be extrapolated from the hexylbenzene peak to the impurity peaks.

In the high molar mass range, the peak of the first calibration standard eluted shall lie before the high molar mass limit of the sample, and the retention volume corresponding to this limit shall be determined.

The results of the calibration runs can be fed into a computer or recorded in the form of a table or in the form of one or more regression curves. They shall be available at all times in the form of hard copy for direct checking. Since the evaluation of the chromatograms involves their conversion into differential distribution curves in which the reciprocal of the first derivative of the calibration curve is required (see 11.4), it shall be possible to differentiate the equation $\log_{10}M = f(\frac{1000}{6}) = \frac{10000}{1000}$

To check how well the calibration curve thus produced fits the measurements, the percentage deviation for each calibration point, given by

$$\frac{M_{\,\mathrm{p,\,calibration\,\,value}}-M_{\,\mathrm{p,\,calculated}}}{M_{\,\mathrm{p,\,calibration\,\,value}}} \times 100$$

shall be plotted against $V_{\rm e}$ or $t_{\rm R}$. From this graph it should be possible to assess whether the positive or negative deviations are random along the $V_{\rm e}$ or $t_{\rm R}$ axis. Calibration-curve fits which exhibit trends in the deviation plot over particular elution ranges are unsuitable. If such distributions of residuals cannot be improved upon with the regression models (see Annex C) available in a laboratory, the results must be expected to contain greater errors and this shall be stated in the test report.

The test for the distribution of residuals need not be carried out on calibration curves obtained by methods in which the measured points and those of the calibration curve automatically coincide, as is the case with a connected series of straight lines and with uncompensated spline algorithms. With these methods, other means must be used to ensure that the calculated calibration curves contain no physically impossible areas, e.g. regions with a positive slope.

8 Sampling

Take a representative sample of the product to be tested, as described in ISO 15528. Examine and prepare each sample for testing, as described in ISO 1513.

© ISO 2008 – All rights reserved