INTERNATIONAL STANDARD

ISO 17396

First edition 2014-01-15

Synchronous belt drives — Metric pitch, trapezoidal profile systems T and AT, belts and pulleys

Transmissions synchrones par courroies — Pas métrique, poulies et courroies dentées à dents trapézoïdales de profil T ou AT

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 17396:2014 https://standards.iteh.ai/catalog/standards/sist/89956d76-fe66-42a4-9e89-0471df80cc60/iso-17396-2014

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 17396:2014 https://standards.iteh.ai/catalog/standards/sist/89956d76-fe66-42a4-9e89-0471df80cc60/iso-17396-2014

COPYRIGHT PROTECTED DOCUMENT

© ISO 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Foreword	iv
1 Scope	1
2 Normative references	1
3 Belt profile systems	1
4 Belt nomenclature	2
5 Pulley profile systems	2
6 Pulley nomenclature	2
 7 Belt profile systems T and AT 7.1 Belt profile systems T and AT — General 7.2 Profile system T — Belt tooth dimensions and tolerances 7.3 Profile system AT — Belt tooth dimensions and tolerances 	3 3
8 Belt widths and tolerances	4
9 Pitch length measurement 9.1 Endless belts manufactured in circular moulds 9.2 For very long endless belts and open belts 9.3 Total measuring forces 9.4 Procedures 9.5 Belt length tolerances ANDARD PREVIEW	
10 Pulleys 10.1 General profile system T 10.2 General profile system AT	9 12
Annex A (normative) Pulley tolerances ISO 17396:2014 Annex A (normative) Pulley tolerances and additional and a standards/sist/89956d76-fe66-42a4-9e89-	15
Bibliography 0471df80cc60/iso-17396-2014	18

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 41, *Pulleys and belts* (including veebelts), Subcommittee SC 4, *Synchronous belt drives*.

ISO 17396:2014 https://standards.iteh.ai/catalog/standards/sist/89956d76-fe66-42a4-9e89-

0471df80cc60/iso-17396-2014

Synchronous belt drives — Metric pitch, trapezoidal profile systems T and AT, belts and pulleys

1 Scope

This International Standard specifies the principal characteristics of synchronous endless and open belts and pulleys of the profile systems T and AT for use in synchronous belt drives¹⁾ for mechanical power transmission and where positive indexing or synchronization can be required.

The principal belt and pulley characteristics include

- a) nominal belt tooth dimensions,
- b) belt tooth pitch spacing,
- c) belt length and width dimensions,
- d) belt length measurement specifications,
- e) pulley groove dimensions and tolerances,
- f) pulley diameter and width dimensions and tolerances, and VIE.W
- g) pulley quality specification. (standards.iteh.ai)

The belts of the profile systems T and AT are made of polyurethane with high-tension fine steel cord tension members in most cases. As far as certain forces are given in this International Standard, these values are only valid for this kinds of belt. For polyurethane belts with different tensile cords, i.e. aramid or rubber belts reinforced with glass fibre, the values can be different. It is intended that the user and the manufacturer agree about suitable values. Open belts made of thermoplastic polyurethane can be spliced to work as endless belts in conveyor applications. In this case, the tolerances are not valid for the splicing area of the endless spliced belt.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 254, Belt drives — Pulleys — Quality, finish and balance

3 Belt profile systems

Eight belt profiles for synchronous drives are standardized.

Profile system T: Profile system AT:

— profile T2,5 — profile AT3

— profile T5 — profile AT5

— profile T10 — profile AT10

¹⁾ Synchronous belt drives have been known by various titles in the past: for example, timing belt drives, positive belt drives, gear belt drives.

ISO 17396:2014(E)

— profile T20 — profile AT20

4 Belt nomenclature

A belt is designated by a combination of numbers and letters as follows:

- a) the width, in millimetres;
- b) the profile system;
- c) the pitch, in millimetres;
- d) the belt pitch length, in millimetres (and add the number of teeth in brackets, if required);
- e) double-sided belts are designated by adding D_G or D_T before the profile system letter: D_G if the tooth position is opposite G_{AD} ; D_T if the tooth position is opposite D_T if the tooth
- f) open belts are designated by adding the letter "M" behind the length; for spliced belts, use the letter "V."

EXAMPLE 1 A metric synchronous belt of 10 mm pitch, profile system T, 50 mm wide, and 1 400 mm in pitch length is designated as:

- for a single-sided belt: 50 T10 1 400
- for a double-sided belt: 50 D_G T10 1 400 or 50 D_T T10 1 400

EXAMPLE 2 A metric synchronous belt of 5 mm pitch, profile system AT, 25 mm wide, and 500 mm in pitch length (number of teeth = 100) is designated as: and ards. iteh. al)

— for a single-sided belt: 25 - AT5 - 500 (100 t)

ISO 17396:2014

— for double-sided belt: **25** • **D** and **AT5** • **500 (100 t)** or **25** • **D** 7 • **AT5** • **500 (100 t)** 0471 df80cc60/iso-17396-2014

EXAMPLE 3 An open metric synchronous belt of 5 mm pitch, profile system AT, 25 mm wide, and 50000 mm in pitch length is designated as:

25 - AT5 - 50000 - M

5 Pulley profile systems

Eight pulley profiles for synchronous drives are standardized:

Profile system T: Profile system AT:

— profile T2,5 — profile AT3

— profile T5— profile AT5

— profile T10 — profile AT10

— profile T20 — profile AT20

6 Pulley nomenclature

A pulley for a synchronous drive is identified by the number of grooves, the groove pitch and profile, and the width. It is designated, as is the belt, by a combination of numbers and letters as follows:

- a) the letter "P," which indicates a pulley;
- b) the number of grooves;

- c) the profile system;
- d) the groove pitch, in millimetres;
- e) the width, in millimetres.

EXAMPLE A pulley for a metric toothed belt which has 20 mm pitch and 30 grooves with a nominal width of 50 mm is identified as follows.

- for T-profile system pulley: P30 T20 50
- for AT-profile system pulley: P30 AT20 50

7 Belt profile systems T and AT

7.1 Belt profile systems T and AT — General

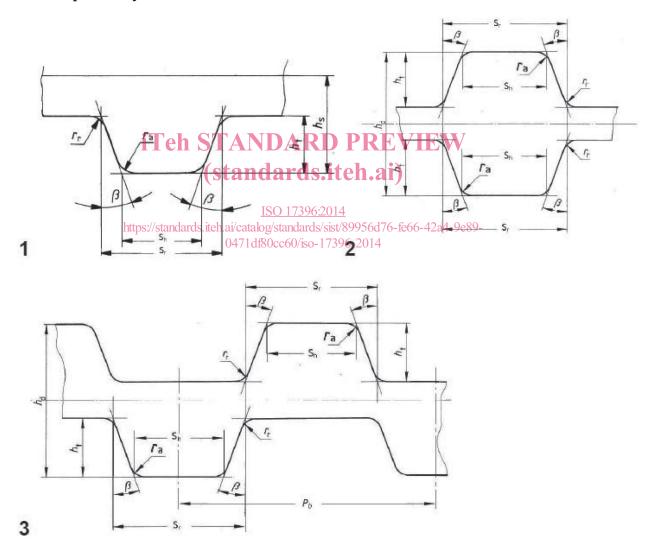


Figure 1 — Belt dimensions for profile systems T and AT

7.2 Profile system T — Belt tooth dimensions and tolerances

The nominal belt tooth dimensions are the same for single-sided and double-sided belts; they are given in $\underline{\text{Table 1}}$ and shown in $\underline{\text{Figure 1}}$.

Table 1 — Profile system T — Nominal tooth dimensions

Belt pro- file	Pitch P _b mm	Tooth angle $2\beta^{\circ}$	$\begin{array}{c} \textbf{Root width} \\ \mathcal{S}_r \\ \text{mm} \end{array}$	h _s mm	h _d mm	h _t mm	r _a min mm	r _r ±0,1 mm	
T2,5	2,5	40 ± 2	1,50 ± 0,05	1,30 ± 0,15	1,90	0,70 ± 0,05	0,2	0,2	
Т5	5,0	40 ± 2	2,65 ± 0,05	2,20 ± 0,15	3,25	1,20 ± 0,05	0,4	0,4	
T10	10,0	40 ± 2	5,30 ± 0,10	4,50 ± 0,30	6,80	2,50 ± 0,10	0,6	0,6	
T20	20,0	40 ± 2	10,15 ± 0,15	8,00 ± 0,45	12,85	5,00 ± 0,15	0,8	0,8	
NOTE The value of h_d can vary due to process-related adjustments of the manufacturer.									

7.3 Profile system AT — Belt tooth dimensions and tolerances

The nominal belt tooth dimensions are the same for single-sided and double-sided belts; they are given in <u>Table 2</u> and shown in <u>Figure 1</u>.

Table 2 — Profile system AT — Nominal tooth dimensions

Belt profile	Pitch P _b mm	Tooth angle 2β°	Head width $S_{\rm h}$ mm	h _s mm	h _d mm	h _t mm	r _a min mm	r _r ±0,1 mm
AT3	3,0	50 ± 2	1,50 ± 0,05	1,90 ± 0,15	n.a.	1,10 ± 0,05	0,3	0,1
AT5	5,0	50 ± 2	2,50 ± 0,05	-2,70 ± 0,15	3,05	1,20 ± 0,05	0,4	0,6
AT10	10,0	50 ± 2	$5,00 \pm 0,10$	4,50 ± 0,30a	6,50	2,50 ± 0,10	0,6	1,2
			(sta	ndards.it	teh.ai)			
AT20	20,0	50 ± 2	10,00 ± 0,15	8,00 ± 0,45a	12,15	5,00 ± 0,15	1,6	2,5
				ISO(9,70)96:201	<u>4</u>			

NOTE The value of h_d can vary due to process-related adjustments of the manufacturer.

8 Belt widths and tolerances

Belt widths and tolerances are given in <u>Table 3</u>.

Table 3 — Belt widths and width tolerances

Dimensions in millimetres

Belt profile		Tolerance			
T2,5	-	4	6	10	±0,3
T5	6	10	16	25	±0,5
T10	16	25	32	50	±0,5
T20	32	50	75	100	±1,0
AT3	6	10	16	25	±0,3
AT5	6	10	16	25	±0,5
AT10	16	25	32	50	±0,5
AT20	32	50	75	100	±1,0

NOTE Tolerances for larger belt widths and closer tolerances to be confirmed between the user and the manufacturer.

The thickness of the backside depends on the method of manufacturing.

9 Pitch length measurement

9.1 Endless belts manufactured in circular moulds

9.1.1 Measuring fixture (see Figure 2)

The pitch length of a synchronous belt shall be determined by placing the belt on a measuring fixture composed of the following elements.

- **9.1.1.1 Two pulleys of equal diameter**, as specified in <u>Table 4</u>, of the proper profile shown in <u>Table 7</u>. One pulley shall be free to rotate on a fixed-position shaft, while the other shall be free to rotate on a moveable shaft to permit the centre distance to change.
- **9.1.1.2 Means of applying a total measuring force**, to the moveable pulley, as given in <u>Table 5</u>.
- **9.1.1.3 Means of measuring the centre distance** between the two pulleys with the necessary degree of accuracy for centre distance measurement.

NOTE The number of pulley teeth specified in <u>Table 4</u> determines the recommended sizes for measuring the belt pitch length. Practicably, the other sizes of pulleys can be used provided they have the same number of teeth and meet the dimensional requirements of <u>Table 4</u>.

Key

- 1 total measuring force
- 2 centre distance

Figure 2 — Fixture for measuring the pitch length for endless belts manufactured in circular moulds

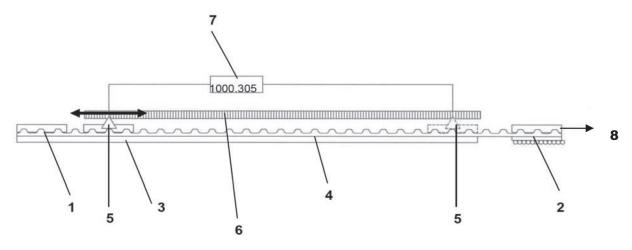
Table 4 — Belt length measuring pulleys

Dimensions in millimetres

Belt profile	Number of grooves	Pitch circumference			Axial runout		
				FIMa	FIMa		
T2,5	20	50	15,42 _{-0,05}	0,013	0,025		
Т5	20	100	30,99 -0,05	0,013	0,025		
T10	20	200	61,80 -0,08	0,013	0,025		
T20	20	400	124,47 -0,08	0,013	0,050		
AT3	20	60	18,69 -0,05	0,013	0,025		
AT5	20	100	30,61 -0,05	0,013	0,025		
AT10	24	240	74,57 _{-0,08}	0,013	0,025		
AT20	25	500	156,33 -0,08	0,013	0,050		
a Full indicator movement.							

9.2 For very long endless belts and open belts

9.2.1 Measuring fixture (see Figure 3)


The pitch length of a synchronous belt shall be determined by placing the belt on a measuring fixture composed of the following elements:

9.2.1.1 Two identical toothed clamps, of the proper profile, covering three complete belt teeth in mesh, and having zero spacing tooth shape.

ISO 17396:2014

9.2.1.2 Means of applying a total measuring force to the moveable clamp, given in <u>Table 5</u>.

9.2.1.3 Means of measuring the distance between the two clamps with the necessary degree of accuracy for distance measurement.

Key

- 1 fixed clamp
- 2 moveable clamp
- 3 table
- 4 belt specimen

- 5 measuring plate
- 6 scale
- 7 display
- 8 total measuring force

Figure 3 — Fixture for measuring pitch length of very long endless belts and open belts

9.3 Total measuring forces

The total measuring force to be applied for measuring belts is given in <u>Table 5</u>.

Table 5 — Total measuring force

Forces in newton

				Total	measuring N	force			
Belt profile	Belt width mm								
	4	6	10	16	25	32	50	75	100
T2,5	6	10	20						
Т5		20	40	60	90	(120)			
T10				90	140	170	270	(410)	(540)
T20					(270)	340	540	800	1100
AT3		20	40	60	90				
AT5		25	50	80	120	(160)	(250)		
AT10			(110)	170	270	340	540	(800)	(1100)
AT20					(650)	860	1300	1950	2600

The given measuring forces are valid for the measurement according to 9.4.1; for 9.4.2, the measuring forces have to be bisected (50% of given values). Forces for bigger belt width shall be confirmed between the user and the manufacturer. (standards.iteh.ai)

9.4 Procedures

ISO 17396:2014

https://standards.iteh.ai/catalog/standards/sist/89956d76-fe66-42a4-9e89-For endless belts manufactured in circular moulds

In measuring the pitch length of a synchronous belt as illustrated in Figure 2, the belt should be rotated at least two revolutions to seat it properly and to divide the total force equally between the two lengths of the belt. The pitch length shall be calculated by adding the pitch circumference of one of the pulleys to twice the measured centre distance. Check double-sided belts on both tooth faces separately.

9.4.2 For very long endless belts and open belts

A single-sided belt specimen is fixed with the belt's flat side on a device as illustrated in Figure 3, and loaded with 50 % of the measuring force (see <u>Table 5</u>). The measuring plate of the device shall be brought into contact with the belts teeth and the measuring system shall be set to zero then. After that, the measuring plate shall be traversed as shown in Figure 3 to the right side and brought into contact with the belt again at a distance of 1 000 mm (or 1 002 mm in case of AT3) corresponding to the exact number of teeth (see NOTE below). The real distance is read from the display of the measuring system. This distance corresponds with the belt length. Double sided belts shall be checked on both sides separately.

NOTE 1 000 mm equals

- 400 teeth for a pitch of 2,5 mm,
- 200 teeth for a pitch of 5 mm,
- 100 teeth for a pitch of 10 mm, and
- 50 teeth for a pitch of 20 mm.

1 002 mm equals 334 teeth for a pitch of 3 mm.