INTERNATIONAL STANDARD

ISO 10295-1

First edition 2007-07-01

Fire tests for building elements and components — Fire testing of service installations —

Part 1:

Penetration seals

iTeh STEssais au feu pour les éléments et composants de bâtiment — Essai au feu des installations de service —

(Standards.iteh.al)
Partie 1: Joints d'étanchéité

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10295-1:2007 https://standards.iteh.ai/catalog/standards/sist/5aa47771-3c60-4313-9afd-b7d1c4073b03/iso-10295-1-2007

COPYRIGHT PROTECTED DOCUMENT

© ISO 2007

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents		Page
1	Scope	1
2	Normative references	2
3	Terms and definitions	2
4	Symbols and abbreviated terms	3
5	Test equipment	3
6	Test conditions	3
7	Instrumentation	
8	Test construction	
9	Test procedure	5
10	Test criteria	9
11	Expression of results	10
12	Direct field of application	10
13	Test report	10
Ann	nex A (informative) Explanatory notes	12
	(standards.iteh.ai)	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 10295-1 was prepared by Technical Committee ISO/TC 92, Fire safety, Subcommittee SC 2, Fire containment.

ISO 10295 consists of the following parts, under the general title Fire tests for building elements and components — Fire testing of service installations: dards.iteh.ai)

- Part 1: Penetration seals

A Part 2 dealing with linear joint (gap) seals and a Part 3 dealing with the methodology for establishing direct and indirect fields of application for single component penetration seals are under preparation.

Introduction

This part of ISO 10295 has been prepared to provide a method of test for assessing the contribution of a penetration sealing system to the fire resistance of separating elements when they have been penetrated by a service. It should be read in conjunction with ISO 834-1. This part of ISO 10295 contains specific requirements for fire resistance testing that are unique to the elements of building construction described as a penetration sealing system. The requirements for these penetration sealing systems are intended to be applied as appropriate in conjunction with the detailed and general requirements contained in ISO 834-1.

iTeh STANDARD PREVIEW (standards.iteh.ai)

iTeh STANDARD PREVIEW (standards.iteh.ai)

Fire tests for building elements and components — Fire testing of service installations —

Part 1:

Penetration seals

CAUTION — The attention of all persons concerned with managing and carrying out this fire resistance test is drawn to the fact that fire testing can be hazardous and that there is a possibility that toxic and/or harmful smoke and gases can be evolved during the test. Mechanical and operational hazards can also arise during the construction of the test elements or structures, their testing and disposal of test residues.

An assessment of all potential hazards and risks to health shall be made and safety precautions shall be identified and provided. Written safety instructions shall be issued. Appropriate training shall be given to relevant personnel. Laboratory personnel shall ensure that they follow written safety instructions at all times.

iTeh STANDARD PREVIEW (standards.iteh.ai)

1 Scope

ISO 10295-1:2007

This part of ISO 10295 specifies the heating condition, method of test and criteria for the evaluation of the ability of a penetration sealing system to maintain the integrity and insulation of a fire separating element at the position at which it has been penetrated, for example by a service.

This part of ISO 10295 assesses

- a) the effect of such penetrations on the integrity and insulation performance of the element concerned,
- b) the integrity and insulation performance of the penetration sealing system,
- c) the insulation performance of the penetrating service or services, and where appropriate, the integrity failure of a service.

This part of ISO 10295 does not provide information concerning the influence of the inclusion of such penetrations and sealing systems on the load-bearing capacity of the element.

It is possible that a penetration seal is a component of, or contributes to the performance of, a system to which special requirements apply. In such cases additional tests, relevant to the system and its function, can be necessary. Examples are chimneys and fire-rated ducts in air distribution systems.

This part of ISO 10295 is not intended to provide quantitative information on the rate of leakage of smoke and/or hot gases or on the transmission or generation of fumes. Such phenomena are to be noted in describing the general behaviour of specimens during test.

This part of ISO 10295 does not provide information on the ability of the seal to withstand stresses that can be caused by the movement or displacement of the penetration services in practice.

NOTE Explanatory notes are included in Annex A.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 13943, Fire safety — Vocabulary

ISO 834-1, Fire-resistance tests — Elements of building construction — Part 1: General requirements

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 13943 and ISO 834-1 and the following apply.

3.1

fire separating element

floors, walls and other separating elements of construction having a period of fire resistance determined in accordance with ISO 834-1

3.2

penetration

aperture within a fire separating element usually present to accommodate the passage of a service through that element

(standards.iteh.ai)

service

penetrating item for example a cable, conduit, pipe with or without any insulation, duct, chimney, or trunking, excluding air ventilation systems and fire-rated ventilation ducts, smoke extract ducts and fire-rated service ducts and shafts

3.4

penetration seal

single component or system used to maintain the fire resistance of the fire separating element at the position where services pass through the element

3.5

penetration sealing system

assembly for test consisting of the penetrating service or services and the penetration seal, materials or devices, together with any service support construction, designed to maintain the integrity and insulation performance of the separating element for the duration of the fire test

3.6

service support

mechanical support provided in the form of clips, ties, hangers, ladder racks of trays, or any device designed to carry the load imposed by the penetrating services

3.7

blank penetration seal

system where an aperture of specified size in the fire separating element is sealed or closed by the specified seal without incorporation of penetrating services

3.8

test construction

complete assembly, consisting of the separating element and penetration sealing system

4 Symbols and abbreviated terms

Symbols and designations appropriate to this test are given in ISO 834-1.

5 Test equipment

- **5.1** Equipment employed in the conduct of this test consists of a furnace, restraint and support frames and instrumentation as specified in ISO 834-1 and this part of ISO 10295.
- **5.2** The internal dimensions of the test furnace shall have a minimum size of 1 m \times 1 m \times 1 m and shall be such that a distance of at least 200 mm exists between any point of the periphery of any penetration seal and the wall of the furnace.

6 Test conditions

- **6.1** All test conditions, except those noted herein, shall conform to those given in ISO 834-1.
- **6.2** Where a penetration sealing system is intended for use in both floors and walls, then each orientation shall be tested.
- **6.3** A pressure of (20 ± 2) Pa shall be established at the bottom of the lowest penetration in a vertical assembly.
- **6.4** For horizontal elements a static pressure of (20 ± 2) Pa in the horizontal plane (100 ± 10) mm below the underside of the separating element shall exist rds. iteh.ai

7 Instrumentation

ISO 10295-1:2007

https://standards.iteh.ai/catalog/standards/sist/5aa47771-3c60-4313-9afd-

The control, monitoring and recording equipment necessary to carry out tests in accordance with this part of ISO 10295 shall be as described in ISO 834-1.

8 Test construction

8.1 Number of specimens

- **8.1.1** In the case of asymmetrical vertical elements, normally two tests shall be carried out; one from each direction of exposure. Where it can be established clearly in an asymmetrical vertical element that there is a weaker direction of exposure, it is required to test only the weaker. A full justification for the procedure adopted shall be included in the report. Where the penetration sealing system is fully symmetrical, only one specimen is required to be tested with either face exposed to the heating regime.
- **8.1.2** In the case of horizontal elements, the test specimen shall be exposed to heating from the underside.

8.2 Size of specimen

- **8.2.1** A penetration and the accompanying penetration seal shall be full size. In order to avoid boundary effects, the distance between the perimeter of the penetration sealing system and the outer perimeter of the heated part of the separating element shall be not less than 200 mm at any point.
- **8.2.2** In cases where multiple penetrations are included in a single test construction, the minimum distance between adjacent fire seals shall be not less than 200 mm. Each penetration with its associated service(s) and penetration sealing system(s) shall be the subject of a separate evaluation providing the specified conditions are maintained with respect to the penetration being evaluated.

8.3 Fire separating element

8.3.1 General

The fire separating elements shall be of known fire resistance and the construction details shall be representative of that used in practice. A rating obtained on such a specific separating element shall apply only to that particular type of separating element.

8.3.2 Standard fire separating elements

8.3.2.1 Wall constructions

The constructions depend on the period of fire resistance required. For concrete and masonry elements the wall shall be constructed from materials having a density of (650 ± 200) kg/m³ and a thickness of not less than 70 mm.

8.3.2.2 Floor constructions

The floor constructions for concrete elements should have a density of $(650\pm200)\,\mathrm{kg/m^3}$ or $(2\,200\pm250)\,\mathrm{kg/m^3}$ and a thickness of not less than 100 mm.

8.4 Penetrating service

iTeh STANDARD PREVIEW

8.4.1 Selection of service(s)

(standards.iteh.ai)

- **8.4.1.1** The type of service or services passing through the penetration in the fire resisting element shall be selected so as to be representative of the service which the penetration seal is designed to accommodate. Standard service configurations for various applications are the subject of a separate document, which is in preparation.
- **8.4.1.2** When more than one penetration is incorporated into a test on a single separating element whilst remaining within the requirements of 6.3, 6.4 and 8.2, care shall be taken to ensure that there is no interaction between different penetrations. Examples are, for instance, where the early failure at one of the penetrations invalidates the time-temperature or pressure conditions specified or where one penetration sealing system directly influences another, e.g. by flaming or melting.

8.4.2 Installation of service(s)

- **8.4.2.1** For penetration systems that are uninsulated or partially insulated, the following distances shall be met. The exposed length of the uninsulated surface of the penetration system on the exposed face shall be a minimum of 300 mm. The unexposed length of the uninsulated surface of the penetration system on the unexposed face shall be a maximum of 500 mm. In this context the penetration sealing system shall include any coating, wrapping or other protection to the services.
- **8.4.2.2** At the start of the test, there shall be a minimum separation of 200 mm between adjacent penetrations and between any penetration and the internal surface of the furnace.
- **8.4.2.3** For the purpose of the test, the possibilities for support provided to the services are as follows:
- a) unsupported condition;
- b) notional support, agreed between the sponsor and the laboratory;
- c) either full-scale simulation (representative of practical conditions); or
- d) calculation and application of a load to simulate practical conditions. This will determine the field of direct application.

- 8.4.2.4 In each case, the procedure adopted and the validity of the test result shall be fully described in the report.
- 8.4.2.5 In the case of pipes, end options may be selected according to Table 1 and the conditions used shall be considered in the corresponding classification of the test result.

Table 1 — Pipe end situation

	•			
Pipe end options				
	1			

Pipe end options		
inside the furnace	outside the furnace	
uncapped	uncapped	
capped	uncapped	
uncapped	capped	
capped	capped	

8.4.2.6 The capping of pipes shall be carried out by closing the pipe end with a mineral wool or ceramic fibre disc of a thickness of (50 ± 10) mm and a density of (150 ± 50) kg/m³ fixed in place with an appropriate adhesive e.g. sodium silicate adhesive, ceramic adhesive. Alternatively, pipes may be sealed by welding a disc of the same material as the pipe to the end. In cases where vertical pipes are tested, the mineral wool or ceramic fibre discs shall be fixed additionally by mechanical means.

8.5 Penetration seal

8.5.1 Installation of penetration sear NDARD PREVIEW

The penetration sealing system shall be installed, together with services chosen to represent the field of application. Install these services in accordance with the manufacturer's instructions or in a manner representative of site practice. The installation procedures shall be described in the test report.

> https://standards.iteh.ai/catalog/standards/sist/5aa47771-3c60-4313-9afdb7d1c4073b03/iso-10295-1-2007

8.5.2 Addition of services

In the case where a penetration sealing system is designed to allow for the alteration of the service content after first installation, a representative penetration sealing system shall be prepared and fully conditioned. After this period, any required modifications shall be made to the service loading and a further conditioning period shall be allowed if necessary. Such procedures shall be fully described in the report.

8.5.3 Blank penetration seal

A blank penetration seal shall be tested in accordance with this part of ISO 10295. The test results of the blank penetration seal shall not be applied after the penetrating item is installed.

9 Test procedure

9.1 Pre-test conditioning

After completion of the test construction, it shall be subject to a conditioning procedure in accordance with ISO 834-1.