NOTICE: This standard has either been superseded and replaced by a new version or withdrawn. Please contact ASTM International (www.astm.org) for the latest information.

Designation: A 387/A 387M - 06

Used in USDOE-NE Standards

Standard Specification for Pressure Vessel Plates, Alloy Steel, Chromium-Molybdenum¹

This standard is issued under the fixed designation A 387/A 387M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope*

1.1 This specification² covers chromium-molybdenum alloy steel plates intended primarily for welded boilers and pressure vessels designed for elevated temperature service.

1.2 Plates are available under this specification in several grades having different alloy contents as follows:

	Nominal	Nominal
	Chromium	Molybde-
		num
Grade	Content, %	Content, %
2	0.50	0.50
12	1.00	0.50
11	1.25	0.50
22, 22L	2.25	1.00
21, 21L	3.00	1.00
5	5.00	0.50
9	9.00	1.00
91	9.00	1.00

1.3 Each grade except Grades 21L, 22L, and 91 is available in two classes of tensile strength levels as defined in the Tensile Requirements tables. Grades 21L and 22L are available only as Class 1. Grade 91 is available only as Class 2.

NOTE 1—Grade 911, previously covered by this specification, is now covered by Specification A 1017/A 1017MA1017/A1017M.

1.4 The maximum thickness of plates is limited only by the capacity of the composition to meet the specified mechanical property requirements.

1.5 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents. Therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with this specification.

¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel, and Related Alloys and is the direct responsibility of Subcommittee A01.11 on Steel Plates for Boilers and Pressure Vessels.

Current edition approved March 1, 2006. Published March 2006. Originally approved in 1955. Last previous edition approved in 2005 as A 387/A 387M - 05a.

2. Referenced Documents

2.1 ASTM Standards:³

A20/A20M Specification for General Requirements for Steel Plates for Pressure Vessels

- A307 Specification for Carbon Steel Bolts, Studs, and Threaded Rod 60 000 PSI Tensile Strength
- A435/A435M Specification for Straight-Beam Ultrasonic Examination of Steel Plates
- A577/A577M Specification for Ultrasonic Angle-Beam Examination of Steel Plates
- A578/A578M Specification for Straight-Beam Ultrasonic Examination of Rolled Steel Plates for Special Applications

A1017/A1017M Specification for Pressure Vessel Plates, Alloy Steel, Chromium-Molybdenum-Tungsten

3. General Requirements and Ordering Information

3.1 Material supplied to this material specification shall conform to Specification A 20A20/A20M/A 20M. These requirements outline the testing and retesting methods and procedures, permissible variations in dimensions and weight, quality and repair of defects, marking, loading, etc.

3.2 Specification A 20A20/A20M/A 20M also establishes the rules for the ordering information that should be complied with when purchasing material to this specification.

3.3 In addition to the basic requirements of this specification, certain supplementary requirements are available when additional control, testing, or examination is required to meet end use requirements. These include:

- 3.3.1 Vacuum treatment,
- 3.3.2 Additional or special tension testing,
- 3.3.3 Impact testing, and
- 3.3.4 Nondestructive examination.

² For ASME Boiler and Pressure Vessel Code applications, see related Specification SA-387/SA-387M in Section II of that Code.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn. Please contact ASTM International (www.astm.org) for the latest information. A 387/A 387M – 06

TALE 1 Chemical Reprinting TALE 1 Chemical Reprinting It Control from the second structure Control from the second structure Control from the second structure Pythe Dist-off Control from the second structure Control from the second structure Control from the second structure Pythe Dist-off Control from the second structure Control from the second structure<											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						nical Requireme Composit. Grade and UN	ents ion, % IS Number				
(6) (6) <th>Element</th> <th>Grade 2 S50460</th> <th>Grade 12 K11757</th> <th>Grade 11 K11789</th> <th>eo/ie K21590</th> <th>Grade 22L K21590</th> <th>Grade 21 K31545</th> <th>Grade 21L K31545</th> <th>Grade 5 S50200</th> <th>Grade 9 K90941</th> <th>Grade 91 K91560</th>	Element	Grade 2 S50460	Grade 12 K11757	Grade 11 K11789	eo/ie K21590	Grade 22L K21590	Grade 21 K31545	Grade 21L K31545	Grade 5 S50200	Grade 9 K90941	Grade 91 K91560
Million Objective Signame Opticative Signame Opticative Signame<	arbon: Loot controlo	0.05	0.05 0.17	0.05	ope o lea	010	0.05 0.154	0 10 200	0.16 200	015 200	
0.55-080 $0.40-0.65$ $0.40-0.65$ $0.30-0.60$	Product analysis	0.04-0.21	0.04-0.17	0.04-0.17	s/2 0.04-0.15 ^A	0.12 max	0.04-0.15 ^A	0.12 max	0.15 max	0.15 max	0.06-0.15
markets $0.35-0.18$ $0.35-0.73$ $0.35-0.73$ $0.35-0.18$ $0.35-0.18$ $0.25-0.16$ $0.25-0.16$ $0.25-0.16$ $0.25-0.16$ $0.25-0.16$ $0.25-0.16$ $0.25-0.16$ $0.25-0.16$ $0.25-0.16$ $0.25-0.16$ $0.25-0.16$ $0.25-0.16$ $0.25-0.16$ $0.25-0.16$ $0.25-0.16$ 0.033	langanese: Heat analysis	0.55-0.80	0.40-0.65	0.40-0.65	09.0-0.60 and	0.30-0.60	0.30-0.60	0.30-0.60	0.30-0.60	0.30-0.60	0.30-0.60
Noise 0035 <t< td=""><td>Product analysis</td><td>0.50-0.88</td><td>0.35-0.73</td><td>0.35-0.73</td><td>0.25-0.66</td><td>0.25-0.66</td><td>0.25-0.66</td><td>0.25-0.66</td><td>0.25-0.66</td><td>0.25-0.66</td><td>0.25-0.66</td></t<>	Product analysis	0.50-0.88	0.35-0.73	0.35-0.73	0.25-0.66	0.25-0.66	0.25-0.66	0.25-0.66	0.25-0.66	0.25-0.66	0.25-0.66
(3) (3) <td>Heat analysis Product analysis</td> <td>0.035 0.035</td> <td>0.035 0.035</td> <td>0.035 0.035</td> <td>0.035 0.035 0.035</td> <td>0.035</td> <td>0.035 0.035</td> <td>0.035 0.035</td> <td>0.035 0.035</td> <td>0.030 0.030</td> <td>0.020 0.025</td>	Heat analysis Product analysis	0.035 0.035	0.035 0.035	0.035 0.035	0.035 0.035 0.035	0.035	0.035 0.035	0.035 0.035	0.035 0.035	0.030 0.030	0.020 0.025
malysis 0.035 <	ulfur, max: Heat analysis	0.035	0.035	0.035	0.035 Vec	0.035	0.035	0.035	0.030	0.030	0.010
Ipsis 0.15-0.40 0.50-0.80 0.50-max 0.50 max	Product analysis	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.030	0.030	0.012
Mysis 0.50-0.80 0.80-115 1.00-150 2.00-2.50 2.75-3.25 2.75-3.25 2.00-6.10 2.00-10.00 malysis 0.46-0.85 0.74-1121 0.94-1.66 1.88-2.80 2.63-3.37 2.63-3.37 2.63-3.37 2.00-6.10 7.90-10.10 malysis 0.46-0.85 0.46-0.65 0.44-0.65 0.44-0.65 0.44-0.65 0.40-0.70 0.80-11.10 malysis 0.40-0.65 0.45-0.65 0.45-0.65 0.80-11.10 0.90-11.10 0.90-11.10 0.90-11.10 malysis 0.40-0.65 0.40-0.65 0.40-0.70 0.85-11.5 0.85-11.5 0.80-11.10 0.90-11.10 malysis 0.40-0.65 0.40-0.70 0.85-11.5 0.85-11.5 0.85-11.5 0.85-11.5 0.96-11.10 0.96-11.10 malysis 0.10-0.655 0.85-11.5 0.85-11.5 0.85-11.5 0.85-11.5 0.85-11.5 0.85-11.5 malysis 0.10 0.10 0.95-11.5 0.85-11.5 0.85-11.5 0.85-11.5 0.85-11.5 malysis 0.11 0.10 </td <td>Heat analysis Product analysis</td> <td>0.15-0.40 0.13-0.45</td> <td>0.15-0.40 0.13-0.45</td> <td>0.50-0.80 0.44-0.86</td> <td>0.50 max 0.50 max</td> <td>0.50 max 0.50 max</td> <td>0.50 max 0.50 max</td> <td>0.50 max 0.50 max</td> <td>0.50 max 0.55 max</td> <td>1.00 max 1.05 max</td> <td>0.20-0.50 0.18-0.56</td>	Heat analysis Product analysis	0.15-0.40 0.13-0.45	0.15-0.40 0.13-0.45	0.50-0.80 0.44-0.86	0.50 max 0.50 max	0.50 max 0.50 max	0.50 max 0.50 max	0.50 max 0.50 max	0.50 max 0.55 max	1.00 max 1.05 max	0.20-0.50 0.18-0.56
045-060 045-060	hromium: Heat analysis Product analysis	0.50-0.80 0.46-0.85	0.80-1.15 0.74-1.21	1.00–1.50 0.94–1.56	2.00-2.50	2.00-2.50 1.88-2.62	2.75–3.25 2.63–3.37	2.75–3.25 2.63–3.37	4.00–6.00 3.90–6.10	8.00-10.00 7.90-10.10	8.00–9.50 7.90–9.60
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1olybdenum: Heat analysis	0.45-0.60	0.45-0.60	0.45-0.65	0.90-1.10	0.90-1.10	0.90-1.10	0.90-1.10	0.45-0.65	0.90-1.10	0.85-1.05
.	Product analysis	0.40-0.65	0.40-0.65	0.40-0.70	0.85-1.15	0.85-1.15	0.85-1.15	0.85-1.15	0.40-0.70	0.85-1.15	0.80-1.10
1 1	Heat analysis	:	:	:	• • • • • • • • • • • • • • • • • • •	•C	:	:	:	:	0.40
1 1	Product analysis	:	:	:	ie : 8f1		÷	:	:	:	0.43
xeugo 1 <td>Heat analysis</td> <td>:</td> <td>:</td> <td>:</td> <td>: : -18</td> <td>el</td> <td>:</td> <td>:</td> <td>:</td> <td>0.04 max</td> <td>0.18-0.25</td>	Heat analysis	:	:	:	: : -18	el	:	:	:	0.04 max	0.18-0.25
	Product analysis	:	:	:	V : 8fe	i.	:	:	:	0.05 max	0.16-0.27
$ \begin{array}{ccccccccccccccccccccccccccccccccc$	olumplum: Heat analysis	:	:	:	: c1	a	:	:	:	:	0.06-0.10
	Product analysis	:	:	:	: 774	1)	:	:	:	:	0.05-0.11
	oron: Heat analysis	:	:	:	: 134	:	:	:	:	:	:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Product analysis	:	:	:	: 17/	:	:	:	:	:	:
	itrogen: Heat analysis										
	Product analysis	: :	: :	: :	: :	: :	: :	: :	: :	: :	0.025-0.080
	luminum, max:										0000
	reat analysis Product analysis	: :	: :	: :	87	: :	: :	: :	: :	: :	0.02
	itanium, max:										
: : : : : : : : : : : : : :	Heat analysis	:	:	:	:	:	:	:	:	:	0.01
	Product analysis irconium, max:	:	:	:	: 87n	:	:	:	:	:	0.01
	Heat analysis	:	:	:	: n-0	:	:	:	:	:	0.01

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn. Please contact ASTM International (www.astm.org) for the latest information.

3.4 The purchaser is referred to the listed supplementary requirements in this specification and to the detailed requirements in Specification A 20A20/A20M/A 20M. If the requirements of this specification are in conflict with the requirements of Specification A 20A20/A20M/A 20M, the requirements of this specification shall prevail.

4. Manufacture

4.1 Steelmaking Practice—The steel shall be killed.

5. Heat Treatment

5.1 Except for Grade 91, all plates shall be thermally treated either by annealing, normalizing- and -tempering, or, when permitted by the purchaser, accelerated cooling from the austenitizing temperature by air blasting or liquid quenching, followed by tempering. Minimum tempering temperatures shall be as follows:

Grade	Temperature, °F [°C
2, 12, and 11	1150 [620]
22, 22L, 21, 21L, and 9	1250 [675]
5	1300 [705]

5.1.1 Grade 91 plates shall be normalized at 1900 to 1975° F [1040 to 1080° C] and shall be tempered at 1350 to 1470° F [730 to 800° C].

5.2 Grade 5, 9, 21, 21L, 22, 22L, and 91 plates ordered without the heat treatment required by 5.1 shall be furnished in either the stress-relieved or the annealed condition.

5.3 For plates ordered without the heat treatment required by 5.1, heat treatment of the plates to conform to 5.1 and to Table 2 or Table 3, as applicable, shall be the responsibility of the purchaser.

6. Chemical Requirements Chemical Requirements

6.1 The steel shall conform to the requirements as to chemical composition shown in Table 1 unless otherwise modified in accordance with Supplementary Requirement S17, Vacuum Carbon-Deoxidized Steel, in Specification A 20A20/A20M/A 20M for grades other than Grade 11.

7. Metallurgical Structure

7.1 *Austenitic Grain Size*—Grade 2 material shall have a coarse austenitic grain size.

8. Mechanical Requirements

8.1 Tension Test Requirements:

8.1.1 The material as represented by the tension test specimens shall conform to the applicable requirements of Table 2 or Table 3, as specified on the order.

8.1.2 Adjustment of the percentage elongation requirements is permitted in accordance with Specification A 20A20/A20M/A 20M for plates up to $\frac{3}{4}$ in. [20 mm] inclusive, in thickness when an 8-in. [200-mm] gage length is used.

9. Marking

9.1 In addition to the marking required in Specification A 20A20/A20M/A 20M, each plate shall be legibly stamped or stenciled, depending upon the ordered thickness, with the letter A for annealed, N for normalized and tempered, and Q for accelerated cooled and tempered, as applicable.

10. Keywords

10.1 alloy steel; alloy steel plate; pressure containing parts; pressure vessel steels; steel plates; steel plates for pressure vessels

TABLE 2	Tensile	Requirements	for	Class	1	Plates	
---------	---------	--------------	-----	-------	---	--------	--

	Grades 2 and 12	Grade 11	Grades 22, 21, 5, 9, 21L, 22L
Tensile strength, ksi [MPa]	55 to 80 [380 to 550]	60 to 85 [415 to 585]	60 to 85 [415 to 585]
Yield strength, min, ksi [MPa]	33 [230]	35 [240]	30 [205]
Elongation in 8 in. [200 mm], min, % ^A	18	19	
Elongation in 2 in. [50 mm], min, % ^A	22	22	18
Reduction of area, min, %			45 ^{<i>B</i>}
, ,			10 ^C

^A See Specification A 20A20/A20M/A 20M, elongation adjustments.

^B Measured on round test specimens.

^C Measured on flat specimen.