INTERNATIONAL STANDARD

ISO 17672

First edition 2010-06-01

Brazing — Filler metals

Brasage fort — Métaux d'apport

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 17672:2010 https://standards.iteh.ai/catalog/standards/sist/c9d9f3d3-6ba3-4c1b-98be-ff312416cb32/iso-17672-2010

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 17672:2010 https://standards.iteh.ai/catalog/standards/sist/c9d9f3d3-6ba3-4c1b-98be-ff312416cb32/iso-17672-2010

COPYRIGHT PROTECTED DOCUMENT

© ISO 2010

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Coı	ntents	Page
Fore	eword	
1	Scope	1
2	Normative references	1
3	Composition	1
4	Special vacuum requirement	2
5	Chemical analysis	2
6	Designation	3
7 7.1 7.2	Technical delivery conditionsTypes of product	3
7.3	Condition	5
7.4	Marking	
7.5 7.6	PackagingProduct certificates	
8	Metal hazards iTeh STANDARD PREVIEW	5
Anne	ex A (normative) Codification standards.itch.ai)	16
Bibli	iography	22
	YCC 4 = (= 0 0 0 1 0	

ISO 17672:2010 https://standards.iteh.ai/catalog/standards/sist/c9d9f3d3-6ba3-4c1b-98beff312416cb32/iso-17672-2010

Contents

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 17672 was prepared by Technical Committee ISO/TC 44, Welding and allied processes.

Requests for official interpretations of any aspect of this International Standard should be directed to the Secretariat of ISO/TC 44/WG 3 via your national standards body, a complete listing which can be found at http://www.iso.org/. (standards.iteh.ai)

ISO 17672:2010 https://standards.iteh.ai/catalog/standards/sist/c9d9f3d3-6ba3-4c1b-98be-ff312416cb32/iso-17672-2010

Brazing — Filler metals

1 Scope

This International Standard specifies the compositional ranges of a series of filler metals used for brazing. The filler metals are divided into seven classes, related to their composition, but not necessarily to the major element present.

NOTE 1 For the major element(s) present, see Annex A.

In the case of composite products, such as flux-coated rods, pastes or plastics tapes, this International Standard covers only the filler metal that forms part of such products. The melting temperatures given in the tables are only approximate, as they necessarily vary within the compositional range of the filler metal. Therefore, they are given only for information. Technical delivery conditions are given for brazing filler metals and products containing brazing filler metals with other constituents such as flux and/or binders.

NOTE 2 For some applications, e.g. precious metal jewellery, aerospace and dental, filler metals other than those included in this International Standard are often used and these are covered by other International Standards to which reference can be made.

(standards.iteh.ai)

2 Normative references

ISO 17672:2010

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3677:1992, Filler metal for soft soldering, brazing and braze welding — Designation

ISO 80000-1:2009, Quantities and units — Part 1: General

3 Composition

The filler metal shall have a composition in accordance with Tables 5 to 13 for the particular type, except as modified for special vacuum requirements (see Clause 4 and Table 1).

For the purposes of determining compliance with composition limits, any value obtained from the analysis shall be rounded to the same number of decimal places as used in this International Standard in expressing the specified limit. The following rules shall be used for rounding.

- a) When the figure immediately after the last figure to be retained is less than five, then the last figure to be retained shall be kept unchanged.
- b) When the figure immediately after the last figure to be retained is either
 - 1) greater than five, or
 - 2) equal to five and followed by at least one figure other than zero,

the last figure to be retained shall be increased by one.

c) When the figure immediately after the last figure to be retained is equal to five, and followed by zeros only, then the last figure to be retained shall be left unchanged if even, and increased by one if odd. For the purposes of determining compliance with the requirements of this International Standard, the actual test values obtained shall be subjected to the rounding-off instructions given in ISO 80000-1:2009, Annex B.

NOTE The chemical analysis is of the bulk material, but the material can be composed of discrete powders with different individual compositions or multiple layers of roll-clad foils where each layer can have a different individual composition.

4 Special vacuum requirement

In a few instances, which are most likely to apply to Ag 272, Pd 287, Pd 387, Pd 388, Pd 481, Pd 483, Pd 484, Pd 587, Pd 647 and Au 295, Au 375, Au 625, Au 752, Au 801 and Au 827, lower impurity limits can be required for brazing in vacuum or service in vacuum and these limits shall be as given in Table 1.

Filler metals complying with Table 1 shall have the letter V added as a suffix to the codification plus the digit 1 or 2 to indicate the grade.

NOTE Grade 1 is intended for the most demanding duties, Grade 2 for less demanding.

Impurity	Limit (% by mass max.)			
iTeh STANI	A Grade PR	Grade/2		
C ^a (stand	0,005	0,005		
Cd	0,001	0,002		
P <u>IS</u>	O 1767203002	0,002 ^b		
Pb https://standards.iteh.ai/catalog	standards/sist/c9d9f3d3	-6ba3-4c1b-98be-		
Zn	0,001	0,002		
Mn ^c	0,001	0,002		
In ^c	0,002	0,003		
All other elements where vapour pressure at 500 °C is $> 1.3 \times 10^{-5}$ Pa ^d	0,001	0,002		

Table 1 — Impurity limits for special vacuum requirements

5 Chemical analysis

Chemical analyses shall be carried out by any suitable method, but it should be noted that in the case of many brazing alloys, the use of reference standards may be essential, as agreed between the purchaser and the supplier. Analysis is only required to be carried out routinely for those elements for which specific limits are shown. If, however, the presence of other elements is suspected or in the course of routine analysis is indicated to be in excess of the limits laid down for unnamed elements, or would bring the total of impurities above the specified limit, further analyses shall be carried out for such elements.

^a For filler metal Ag 272 (see Table 6), lower levels may be available by agreement between the purchaser and the supplier.

b For filler metal Ag 272, 0,02 % maximum.

c Except where otherwise specified in Tables 5 to 13.

Examples of such elements are Ca, Cs, K, Li, Mg, Na, Rb, S, Sb, Se, Sr, Te and Tl. For such elements (including Cd, Pb and Zn), the total is limited to 0,010 %.

6 Designation

The filler metal shall be designated by the description "filler metal", the number of this International Standard, i.e. ISO 17672, and a code. Details of the two options for the code system used are given in Annex A.

As an example, the designations of an aluminium filler metal containing 11 % to 13 % Si, in accordance with this International Standard, can be made in one of the following ways:

EXAMPLE 1 Filler metal ISO 17672-Al 112

where

"Filler metal" is the description;

"ISO 17672" is the number of this International Standard;

"Al 112" is the short code given in Tables 5 to 13.

EXAMPLE 2 Filler metal ISO 17672-B-Al88Si-575/585

where

"Filler metal" is the description;

"ISO 17672" is the number of this International Standard;

"B" iTeh STANDARD PREVIEW denotes brazing;

"Al88Si-575/585" is the code in accordance with ISO 3677.

ISO 17672:2010

7 Technical delivery conditions alog/standards/sist/c9d9f3d3-6ba3-4c1b-98be-ff312416cb32/iso-17672-2010

7.1 Types of product

The form of the material shall be agreed between the purchaser and the manufacturer/supplier at the time of placing the order.

NOTE Brazing filler metals are available as rod, wire, foil (or preforms made from them) or powder, although not all filler metals are necessarily available in every type of product. They are also available as a constituent of brazing pastes or, particularly in the case of aluminium brazing filler metals, clad onto one or both sides of an alloy sheet. Rods can be completely or partially coated with flux.

7.2 Dimensions

7.2.1 General

Dimensions and tolerances for foils (see 7.2.2), rods (see 7.2.3) and, to a lesser extent, wires (see 7.2.4) are defined. For other forms and dimensions not listed in the respective tables, the purchaser and the manufacturer/supplier shall agree on the dimensions and tolerances at the time of placing the order.

© ISO 2010 – All rights reserved

7.2.2 Foils

The tolerances for thickness, width and camber are given in Tables 2, 3 and 4.

Table 2 — Thickness tolerance for foils

Thickne	ess	Limits of thickness			
nominal	size	related to width (nominal size)			
mm		mm			
over	to	over 1 mm			
_	0,05	± 10 %			
0,05	0,1	± 0,005			
0,1	0,2	± 0,010			
0,2	0,3	± 0,015			
0,3	0,4	± 0,018			
0,4	0,5	± 0,020			
0,5	0,8	± 0,025			
0,8 1,2		± 0,030			
1,2	2,0	± 0,035			
116	ISIAN	DAKD PKEVIEW			

(standards.iteh.ai)
Table 3 — Width tolerance for foils

Thickne nominal s	ess https://standards.it size	ISO 17672:201 Limits of width eh.ai/catalog/standards/sist/c9d9f3d3-6ba3-4c1b-98be- ff312416cb32/selated-to-width (nominal size)					
mm			mm				
over	to	to 50 mm	Over 100 mm				
_	0,1	+2	+3	+4			
0,1	1,0	+2 0	+3 0	+4 0			
1,0	2,0	+3 0	+4 0	+5 0			

Table 4 — Camber tolerance for foils

Thickne	ess		М	ax. camber for wi	dth					
nominal	size			nominal size						
mm			mm/m							
over	to	3 mm to 10 mm	over 10 mm to 15 mm	over 15 mm to 30 mm	over 30 mm to 50 mm	over 50 mm				
_	0,5	10	7	4	3	3				
0,5	2,0	15	10	6	4	4				

7.2.3 Rods

For rods, the preferred diameters are 1 mm, 1,5 mm, 2 mm, 2,5 mm, 3 mm and 5 mm and the preferred lengths are 500 mm and 1 000 mm. The tolerance on diameter shall be \pm 3 % for drawn rods and \pm 0,3 mm for other fabrication processes. The tolerance on length shall be \pm 5 mm.

7.2.4 Wires

For wires, there are no preferred diameters and the tolerance on diameter shall be \pm 3 %.

7.3 Condition

The surface of brazing filler metals shall be free from contamination which could adversely affect brazing. With flux-coated rods, the coating shall firmly adhere to the rod and shall not break off during proper handling and usage. Welds, when present, shall have been made so as not to interfere with uniform, uninterrupted feeding of filler metal on automatic and semiautomatic brazing.

7.4 Marking

Since in many cases the marking of brazing filler metals themselves is impracticable, reliance shall be placed on the marking of packets. The outside of each smallest unit package shall be clearly marked with the following information:

the designation in accordance with Clause 6;

'eh STANDARD PREVIEW

the name of the manufacturer/supplier;

(standards.iteh.ai)

- the trade name (if any); C)
- the quantity of material and, if applicable, the dimensions; 3d3-6ba3-4c1b-98bed)

ff312416cb32/iso-17672-2010

- the supplier's batch number;
- health and safety warnings (as required by national regulations). f)

7.5 Packaging

Brazing filler metals or products containing them shall be packed to provide sufficient safeguard against damage and deterioration during transportation and storage.

7.6 Product certificates

If certificates (like those specified in ISO 14344) of conformity and/or analysis are required, the purchaser and the manufacturer/supplier shall agree on the details at the time of placing the order.

8 Metal hazards

Although not directly relevant to the requirements of this International Standard, any national requirements for limiting exposure to metal hazards, e.g. fume, should be observed. This is particularly important when using brazing filler metals containing cadmium as an alloying element.

Table 5 — Class Al: aluminium and magnesium brazing filler metals

Code Si Fe Cu Mn Mg Zn Cd Pb Others Non-defined self-ments Al Solidus Liq AL105 Mil-Amax min-Amax max min-Amax max min-Amax max min-Amax max max <td< th=""><th></th><th></th><th></th><th></th><th></th><th>3</th><th>compositio</th><th>Composition, % by mass</th><th>18S</th><th></th><th></th><th></th><th></th><th>Melting temperature (approximate)</th><th>ing rature timate)</th></td<>						3	compositio	Composition, % by mass	18S					Melting temperature (approximate)	ing rature timate)
Solidus Factor Tritary Factor Tritary Factor Tritary Factor Tritary Factor Tritary Factor Tritary	Code	S	Не	Cu	M	Mg	Zu	В	Pb	Others	Non-d elem	efined ents	₹		
Nationary max max min/max max max max max max max min/max max ma											Each	Total		Solidus	Liquidus
14.5% 0 0.6		min./max.	max.	min./max.	max.	min./max.	max.	max.	max.	min./max.	max.	max.		°C	$^{\circ} C$
4,56,0 0,0 -0,30 0,10 0,00 0,025 Ti:-Jo,15 0,05 0,15 Remainder 575 7 6,88,2 0,8 -0,25 0,10 0,20 0,010 0,025 Ti:-Jo,120 0,05 0,15 Remainder 575 7 9,0/11,0 0,8 -0,030 0,05 -0,00 0,00 0,025 Ti:-Jo,20 0,05 0,15 Remainder 575 7 11,0/13,0 0,8 -0,030 0,15 -0,01 0,00 0,025 Ti:-Jo,20 0,05 0,15 Remainder 575 7 11,0/13,0 0,8 -0,030 0,15 -0,01 0,00 0,025 0,01 0,05	Al-Si alloy	,s						httj							
6.8.8.2 0.8 —0.25 0.10 —1 0.20 0.010 —1 0.00 0.010 —1 0.00 0.010 —1 0.00 0.010 0.005 —1 0.005 0.10 0.005 —1 0.005 —1 0.005 —1 0.005 —1 0.005 —1 0.005 —1 0.005 —1 0.005 —1 0.005 —1 0.005 —1 0.005 —1 0.005 —1 0.005 0.005 —1 0.005 —1 0.005	AI 105	4,5/6,0	9,0	-/0,30	0,15	-/0,20	0,10	010	0,025	Ti: —/0,15	0,05	0,15	Remainder	575	630
9,0/11,0 0.08 —0,030 0,005 0,10 0,005 TT:—0,020 0,055 TT:—0,020 0,055 O,15 Remainder 575 11,0/13,0 0.88 —0,030 0,15 —0,010 0,200 60010 0,025 —1— 0,05 0,15 Remainder 575 175 11,0/13,0 0.8 —0,036 0,15 —0,15 —0,15 0,00 0,025 CT:—0,15 0,05 0,15 Remainder 575 175 9,3/10,7 0.8 —0,15 0.20 0.010 0,025 <t< td=""><td>AI 107</td><td>6,8/8,2</td><td>8,0</td><td>/0,25</td><td>0,10</td><td>-/-</td><td>0,20</td><td>010</td><td>0,02</td><td>-/-</td><td>0,05</td><td>0,15</td><td>Remainder</td><td>575</td><td>615</td></t<>	AI 107	6,8/8,2	8,0	/0,25	0,10	-/-	0,20	010	0,02	-/-	0,05	0,15	Remainder	575	615
11,0/13,0 0,8 -/0,30 0,15 -/0,10 0,20 0,005 0,005 0,15 0,05 0,15	AI 110	9,0/11,0	8,0	-/0,30	0,05	-/0,05	0,10	0,010	0,025	Ti: —/0,20	0,05	0,15	Remainder	575	290
9,3/10,7 0,8 3,3/4,7 0,15 —/0,15 0,20 5,000 0,00 0,00 0,00 0,00 0,00 0,	AI 112	11,0/13,0	8,0	-/0,30	0,15	—/0,10	0,20	0,010	20 ,025	-/-	0,05	0,15	Remainder	575	585
10,571, 0,8 3,3/4,7 0,15 0,15 0,20 0,20 0,00 0,00 0,00 0,00 0,00 0,0	Al-Si-Cu a	alloys							Al an						
9,0/10,5 0,8 —/0,25 0,10 1,0/2,0 0,20 6,000 0,025 Bi: 0,025 0,05 0,05 0,15 Remainder 555 8; 0,10 1,0/2,0 0,20 6,000 0,025 0,025 0,005 0,05 0,15 Remainder 555 0,00 1,0/2,0 0,20 6,001 0,025 0,025 0,005 0,05 0,15 Remainder 559 0,011,0/2,0 0,20 0,001 0,025 0,005 0,05 0,15 Remainder 559 0,011,0/2,0 0,20 0,001 0,025 0,005 0,15 Remainder 559 0,001,0/2,13,0 0,8 —/0,25 0,10 1,0/2,0 0,20 0,010 0,025 0,005 0,05 0,15 Remainder 576 0,001 0,025 0,005 0,05 0,15 Remainder 576 0,001 0,025 0,005 0,05 0,15 Remainder 576 0,001 0,025 0,005 0,05 0,15 Remainder 576 0,005 0,0	AI 210	9,3/10,7	8,0	3,3/4,7	0,15	-/0,15	0,20		0,025	Cr: —/0,15	0,05	0,15	Remainder	520	585
9,0/10,5 0,8 —/0,25 0,10 1,0/2,0 0,20 0,05 Bi: 0,02/0,20 0,05 0,15 Remainder 555 9,0/10,5 0,8 —/0,25 0,10 1,0/2,0 0,20 0,025 Bi: 0,02/0,20 0,05 0,15 Remainder 555 7 9,0/10,0 0,8 —/0,25 0,10 0,20/1,0 0,20 0,010 0,025 —/— 0,05 0,15 Remainder 559 7 10,5/13,0 0,8 —/0,25 0,10 0,10/0,50 0,20 0,010 0,025 —/— 0,05 0,15 Remainder 559 7 10,5/13,0 0,8 —/0,25 0,10 1,0/2,0 0,20 0,010 0,025 —/— 0,05 0,15 Remainder 559 7 10,5/13,0 0,8 —/0,25 0,10 1,0/2,0 0,20 0,010 0,025 —/— 0,05 0,15 Remainder 576 7 10,5/13,0 0,08	Al-Si-Mg a	alloys					. U		A						
9,9/10,5 0,8 —/0,25 0,10 1,0/2,0 0,20 0,00 0,00 0,00 0,00 0,00 0,0	AI 310	9,0/10,5	8,0	/0,25	0,10	1,0/2,0	0,20	7 2 2 17 6 /9 17 6 /9	0,025	-/-	0,05	0,15	Remainder	222	290
9,5/11,0 0,8 —/0,25 0,10 0,20/1,0 0,20 0,010 0,025 —/— 0,05 0,15 Remainder 559 11,0/13,0 0,8 —/0,25 0,10 0,10/0,50 0,20 0,20 0,010 0,025 —/— 0,05 0,15 Remainder 569 569 11,0/13,0 0,8 —/0,25 0,10 1,0/2,0 0,20 0,20 0,005 —/— 0,05 0,15 Remainder 576 10,5/13,0 0,8 —/0,25 0,10 —/— 0,50/3,0 0,00 0,005 0,005 0,15 Remainder 576 0,15 Remainder 576 0,05 0,00 0,005 0,005 0,005 0,15 Remainder 576 0,005 0,005 0,15 Remainder 1,7/2,3 0,010 0,025 0,0005 0,005 0,05 0,00 0,005 0,005 0,000 0,005 0,000 0,005 0,000 0,00	AI 311	9,0/10,5	8,0	/0,25	0,10	1,0/2,0	0,20	0 8) si&c'	9,025	Bi: 0,02/0,20	0,05	0,15	Remainder	555	290
11,0/13,0 0,8 —/0,25 0,10 1,0/0,50 0,20 0,20 0,20 0,25 —/— 0,05 0,15 Remainder 562 10,5/13,0 0,8 —/0,25 0,10 1,0/2,0 0,20 0,20 0,25 —/— 0,05 0,15 Remainder 559 10,5/13,0 0,8 —/0,25 0,10 —/— 0,50/3,0 0,010 0,025 —/— 0,05 0,05 0,15 Remainder 576 10,5/13,0 0,8 —/0,25 0,10 —/— 0,50/3,0 0,010 0,025 —/— 0,05 0,05 0,15 Remainder 576 0,002 0,005 0,05 0,05 0,15/13,8 Remainder 1,7/2,3 0,010 0,025 0,00020,0008 0,05 0,30 8,3/9,7 443	AI 315	9,5/11,0	8,0	/0,25	0,10	0,20/1,0	0,20	010 100 1201	0,025	-/-	0,05	0,15	Remainder	559	591
IIIOys According to S/13.0 0,08 —/0,25 0,10 1,0/2,0 0,025 —/— 0,05 0,15 Remainder Ty72.3 559 Remainder Ty72.3 559 Remainder Ty72.3 550 MIII MIIII MIIII MIIII MIIII MIIII MIIII MIIII MIIII MIIIII MIIIIIIII MIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	AI 317	11,0/13,0	8,0	/0,25	0,10	0,10/0,50	0,20	0100	0,025	-/-	0,05	0,15	Remainder	562	582
10,55/13,0 0,8 -/0,25 0,005 -/0,05 0,50/3,0 0,010 0,025 -/ 0,05 0,15 Remainder 576 10,5/13,0 0,08 0,005 0,	AI 319	10,5/13,0	8,0	/0,25	0,10	1,0/2,0	0,20	0,010	0,025	-/-	0,05	0,15	Remainder	559	579
9,0/11,0 0,8 —/0,3 0,05 —/0,05 0,50/3,0 0,010 0,025 —/— 0,05 0,15 Remainder 576	Al-Si-Zn a	lloys						-4c1	Œ						
10,5/13,0 0,8 —/0,25 0,10 —/— 0,50/3,0 0,010 0,025 —/— 0,05 0,15 Remainder 576 576 0,005 0	AI 410	9,0/11,0	8,0	6,0/—	90'0	-/0,05	0,50/3,0	010	0,025	-/-	0,05	0,15	Remainder	929	288
0,05 0,005 0,05 0,15/1,5 Remainder 1,7/2,3 0,010 0,025 0,0002/0,0008 0,05 0,30 8,3/9,7 443	AI 415	10,5/13,0	8,0	/0,25	0,10	-/-	0,50/3,0	0,010	0,025	-/-	0,05	0,15	Remainder	576	609
0,05 0,005 0,05 0,15/1,5 Remainder 1,7/2,3 0,010 0,025 0,0002/0,0008 0,05 0,30 8,3/9,7 443 Ni: —/0,005	Mg alloys														
	Mg 001	0,05	0,005	0,05	0,15/1,5		1,7/2,3	0,010	0,025	Be: 0,0002/0,0008 Ni: —/0,005	0,05	0,30	8,3/9,7	443	599

Table 6 — Class Ag: silver brazing filler metals

Code			(Composition	n, % by mass	;			_	emperature eximate)
Jour	Ag min./max.	Cu min./max.	Zn min./max.	Cd min./max.	Sn min./max.	Si min./max.	Ni min./max.	Mn min./max.	Solidus °C	Liquidus °C
Ag-Cu-Zn-	Sn alloys									
Ag 125	24,0/26,0	39,0/41,0	31,0/35,0	— /0,010	1,5/2,5	— /0,05	—/—	—/—	680	760
Ag 130	29,0/31,0	35,0/37,0	30,0/34,0	— /0,010	1,5/2,5	/0,05	—/—	—/—	665	755
Ag 134	33,0/35,0	35,0/37,0	25,5/29,5	— /0,010	2,0/3,0	— /0,05	—/—	—/—	630	730
Ag 138	37,0/39,0	31,0/33,0	26,0/30,0	/0,010	1,5/2,5	/0,05	_/_	—/—	650	720
Ag 140	39,0/41,0	29,0/31,0	26,0/30,0	/0,010	1,5/2,5	/0,05	—/—	—/—	650	710
Ag 145	44,0/46,0	26,0/28,0	23,5/27,5	/0,010	2,0/3,0	/0,05	—/—	—/—	640	680
Ag 155	54,0/56,0	20,0/22,0	20,0/24,0	/0,010	1,5/2,5	/0,05	—/—	—/—	630	660
Ag 156	55,0/57,0	21,0/23,0	15,0/19,0	— /0,010	4,5/5,5	— /0,05	—/—	—/—	620	655
Ag 160	59,0/61,0	29,0/31,0	—/—	/0,010	9,5/10,5	/0,05	—/—	—/—	600	730
Ag-Cu-Zn	alloys									
Ag 205	4,0/6,0	54,0/56,0	38,0/42,0	— /0,010	—/—	0,05/0,25	—/—	—/—	820	870
Ag 212	11,0/13,0	47,0/49,0	38,0/42,0	— /0,010	—/—	0,05/0,25	—/—	—/—	800	830
Ag 225	24,0/26,0	39,0/41,0	33,0/37,0	- /0,010	R D P	-/ 0,05/	EW	—/—	700	790
Ag 230	29,0/31,0	37,0/39,0	30,0/34,0	— /0,010	de ital	/0,05	—/—	—/—	680	765
Ag 235	34,0/36,0	31,0/33,0	31,0/35,0	— /0,010		— /0,05	—/—	—/—	685	755
Ag 244	43,0/45,0	29,0/31,0	24,0/28,0	-/0 ₃ 010 ₁₇	672 :2 010	— /0,05	—/—	—/—	675	735
Ag 245	44,0/46,0	29,0/3/1,00	123,0/27,01/	catal/0g0:10nd	ard s/g ist/c9d	19f3d/0,65a3	-4c1b/-98be	- —/—	665	745
Ag 250	49,0/51,0	33,0/35,0	14,0/18,0	12416cb32/ /0,010	iso- <u>1767</u> 2-2	.010 —/0,05	—/—	—/—	690	775
Ag 265	64,0/66,0	19,0/21,0	13,0/17,0	— /0,010	—/—	/0,05	—/—	—/—	670	720
Ag 270	69,0/71,0	19,0/21,0	8,0/12,0	— /0,010	—/—	/0,05	—/—	—/—	690	740
Ag 272 ^a	71,0/73,0	27,0/29,0	—/—	— /0,010	—/—	— /0,05	—/—	—/—	780	780
Ag-Cu-Zn-	Cd alloys									
Ag 326	24,0/26,0	29,0/31,0	25,5/29,5	16,5/18,5	—/—	/0,05	—/—	—/—	605	720
Ag 330	29,0/31,0	27,0/29,0	19,0/23,0	19,0/23,0	—/—	/0,05	—/—	—/—	600	690
Ag 335	34,0/36,0	25,0/27,0	19,0/23,0	17,0/19,0	—/ —	— /0,05	—/—	—/—	605	700
Ag 340	39,0/41,0	18,0/20,0	19,0/23,0	18,0/22,0	—/—	— /0,05	—/—	—/—	595	630
Ag 345	44,0/46,0	14,0/16,0	14,0/18,0	23,0/25,0	—/—	— /0,05	—/—	—/—	605	620
Ag 350	49,0/51,0	14,5/16,5	14,5/18,5	17,0/19,0	—/—	— /0,05	—/—	—/—	625	635
Ag 351	49,0/51,0	14,5/16,5	13,5/17,5	15,0/17,0	—/—	— /0,05	2,5/3,5	—/—	635	655