INTERNATIONAL STANDARD

First edition 2011-08-15

Plastics — Methodology for assessing polymer photoageing by FTIR and UV/visible spectroscopy

Plastiques — Méthodologie d'évaluation du photovieillissement des polymères par spectroscopie IRTF et UV/visible

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10640:2011</u> https://standards.iteh.ai/catalog/standards/sist/397e913e-3219-42a7-a7db-53989577a708/iso-10640-2011

Reference number ISO 10640:2011(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10640:2011</u> https://standards.iteh.ai/catalog/standards/sist/397e913e-3219-42a7-a7db-53989577a708/iso-10640-2011

COPYRIGHT PROTECTED DOCUMENT

© ISO 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents

Page

Forewo	ord	iv
Introdu	uction	v
1	Scope	1
2	Terms and definitions and abbreviated terms	1
3	Principle	3
4	Methodology	3
5	Determination of chemical variations in polymer materials by FTIR spectrometry	7
6	Complementary analysis by UV/visible spectroscopy	12
7	Test report	13
Annex	A (informative) Comparison of test results for artificial accelerated photoageing, artificial accelerated weathering and natural outdoor weathering	14
Bibliog	graphy	28

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10640:2011</u> https://standards.iteh.ai/catalog/standards/sist/397e913e-3219-42a7-a7db-53989577a708/iso-10640-2011

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 10640 was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 6, *Ageing, chemical and environmental resistance*.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10640:2011</u> https://standards.iteh.ai/catalog/standards/sist/397e913e-3219-42a7-a7db-53989577a708/iso-10640-2011

Introduction

One of the main interests in the use of artificial accelerated weathering tests is to provide an estimate of the lifetime of polymeric materials exposed in outdoor conditions. This is a very difficult task, and ISO 4892-1^[1] describes some of the reasons why it is difficult and why the use of simple "acceleration factors" relating time in an accelerated test versus time in an outdoor exposure is not recommended without special care.

One way to evaluate whether an artificial accelerated test can predict the relative performance of materials used in outdoor applications is to compare the chemical changes caused by the artificial accelerated test with the chemical changes that occur in outdoor exposure.

Changes in visual appearance (gloss, discoloration, yellowing, bleaching, micro-cracks, etc.) and deterioration in physical (or functional) properties are consequences of chemical changes, even if there is not always a direct relationship between the chemical changes and the mechanical changes. The use of Fourier transform infrared (FTIR) spectroscopy to follow the chemical changes can facilitate the research of correlations between different ageing tests (natural or any kinds of accelerated devices).

This International Standard describes the methodology and a procedure for using FTIR spectroscopy and UV/visible spectroscopy.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10640:2011 https://standards.iteh.ai/catalog/standards/sist/397e913e-3219-42a7-a7db-53989577a708/iso-10640-2011

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10640:2011</u> https://standards.iteh.ai/catalog/standards/sist/397e913e-3219-42a7-a7db-53989577a708/iso-10640-2011

Plastics — Methodology for assessing polymer photoageing by FTIR and UV/visible spectroscopy

1 Scope

This International Standard provides a methodology to assess the ageing of polymeric systems during exposure to laboratory accelerated weathering as well as in outdoor exposures.

NOTE This methodology applies mainly to photoageing, but it can also be applied to thermal ageing.

This methodology identifies analyses that follow the chemical changes which control the deterioration of physical properties of materials during photoageing. The main procedure is based on infrared (IR) spectroscopy analysis and is described in this International Standard. In addition, UV spectroscopy is used for monitoring the behaviour of some additives and to identify the origin of discoloration in polymeric materials (degradation of pigments and colorants, or polymer yellowing).

Examples of applications of this methodology are given in Annex A as guidance for the interpretation of the results.

(standards.iteh.ai)

2 Terms and definitions and abbreviated terms

https://standards.iteh.ai/catalog/standards/sist/397e913e-3219-42a7-a7db-2.1 Terms and definitions 53989577a708/iso-10640-2011

For the purposes of this document, the following terms and definitions apply.

2.1.1

photoageing

entirety of the irreversible chemical and physical processes occurring in a material over the course of time that are initiated by radiation and that can be affected by heat, oxygen and moisture

2.1.2

artificial accelerated weathering

exposure of a material in a laboratory weathering device to conditions which can be cyclic and intensified over those encountered in outdoor or in-service exposure

NOTE 1 This involves a laboratory radiation source, heat and moisture (in the form of relative humidity and/or water spray, condensation or immersion) in an attempt to produce more rapidly the same changes that occur in long-term outdoor exposure.

NOTE 2 The device can include means for controlling and/or monitoring the light source and other weathering variables. It can also include exposure to special conditions, such as acid spray to simulate the effect of industrial gases.

2.1.3

natural outdoor weathering

exposure of a material to global solar radiation under outdoor climatic conditions

2.1.4

absorption spectrum

fraction of the incident electromagnetic radiation absorbed by a material or a molecular entity over a range of frequencies

2.1.5

transmission spectrum

fraction of the incident electromagnetic radiation that is not absorbed but passes through a material or a molecular entity over a range of frequencies

2.1.6

reflection spectrum

reflectance spectrum

fraction of the incident electromagnetic radiation reflected or scattered by a material or a molecular entity over a range of frequencies

NOTE The re-emitted radiation can be composed of two kinds of radiation referred to as specular reflection (when the angle of reflection is equal to the angle of incidence) and diffuse reflection (at all other angles).

2.2 Abbreviated terms

- ABS acrylonitrile-butadiene-styrene
- ATR attenuated total (internal) reflection
- EVAC ethylene-(vinyl acetate) plastic STANDARD PREVIEW
- FTIR Fourier transform infrared

(standards.iteh.ai)

53989577a708/iso-10640-2011

PA polyamide

PAS photoacoustic spectroscopydards.iteh.ai/catalog/standards/sist/397e913e-3219-42a7-a7db-

- PBT poly(butylene terephthalate)
- PC polycarbonate
- PE polyethylene
- PEBA polyether block amide
- PEEK polyetheretherketone
- PE-LD polyethylene, low density
- PET poly(ethylene terephthalate)
- PMMA poly(methyl methacrylate)
- POM poly(oxymethylene); polyacetal; polyformaldehyde
- PP polypropylene
- PPE poly(phenylene ether)
- PS polystyrene
- PUR polyurethane
- PVC-P plasticized poly(vinyl chloride)
- PVC-U unplasticized poly(vinyl chloride)

- SAN styrene-acrylonitrile plastic
- TPU thermoplastic polyurethane
- UP unsaturated polyester resin

UV/VIS ultraviolet/visible

3 Principle

When a polymeric material is exposed to UV radiation and other moderate environmental stresses, the change in most physical properties is attributable to chemical ageing, and the extent of the chemical changes can be related to the duration of the exposure under natural outdoor weathering or artificial weathering exposure.

Chemical changes control the degradation of mechanical properties and contribute to changes in the visual appearance of polymer materials during photoageing. These chemical changes are analysed primarily by IR spectroscopy, with additional analyses using UV/visible spectroscopy during the photoageing of polymers. The analysis at this earliest stage of degradation allows the identification of the critical oxidation products, allows the stoichiometry of reactions to be checked and, in some cases, indicates weak points in the polymer material (e.g. a weakness in the specific structure of the polymer, such as a double bond, an ether group or a urethane group, unstable colorant, lack of UV stabilizers, or migration of low-molecular-mass components of formulations to the surface and their accumulation there).

The relevance of artificial ageing can be determined by comparing/the chemical changes that occur in the accelerated test to those that occur in natural weathering. It should be pointed out that, in some cases, oxidation products can be partially eliminated by hydrolysis, or erosion caused by water under humid climates (e.g. southern Florida) or by wind under very dry climates (e.g. Arizona). Kinetic analysis is recommended to determine the rate of degradation under different conditions of ageing in order to rank different formulations or to determine the range of acceleration possible for an artificial ageing test compared to a given natural outdoor weathering exposure (without distortion of the photodegradation mechanism of the polymer). In addition, these analyses can be used as a tool for developing improvements in polymers and polymeric products.

4 Methodology

4.1 General

Since the mechanism of degradation of polymers is a function of the polymer composition, it might be necessary to identify the chemical composition of the exposed plastics to allow comparison of results from laboratory experiments with those from actual use conditions. This will help in the design of better accelerated tests in those cases when existing accelerated tests have not given useful results for comparison with actual use conditions.

The specific chemical changes which control a given physical deterioration should be identified. For example, mechanical failures are generally controlled by the extent of oxidation, which makes their prediction possible.

In many cases, the extent of oxidation and the extent of changes in mechanical properties are often closely linked via main-chain scissions. A specific correlation study could be carried out for a given material in order to predict mechanical-property changes from the measurement of the concentration of oxidation products.

Except in the case of yellowing due to direct phototransformation, e.g. in the case of aromatic polymers, the change in visual appearance is generally controlled by several chemical processes (loss of gloss, discoloration, bleaching, micro-cracks, etc.). Therefore, an accelerated photoageing test is only predictive if one single process prevails over the others.

4.2 Guidance on the assessment of chemical changes

4.2.1 General

Different chemical changes take place that depend on the mechanisms of the degradation. These changes vary in importance and include matrix oxidation, chain scission and/or crosslinking, yellowing, bleaching, formation of fluorescent products, modification of stabilizer molecules, hydrolysis and photolysis.

Analysis of the chemical changes in polymeric materials submitted to exposure is performed by applying the following two rules:

- a) only changes in the solid state are relevant, so the analysis shall be carried out on solid-state materials, of particular importance when examining the stability of intermediate products.
- b) chemical changes shall only be considered at very low levels of change since the physical (mechanical or appearance) deterioration occurs at a very early stage in the chemical process, except when the "ultimate" fate of polymeric materials is being examined for environmental-protection purposes (e.g. the oxodegradation or oxobiodegradation of polyolefin films).

Although the main chemical changes take place in the polymer matrix, the fate of additives and colorants shall also be considered.

NOTE These rules are general ones and apply to any polymeric material exposed to light, heat, O_2 , H_2O and other potentially degrading exposure stresses.

4.2.2 Identification of the main degradation route **RD PREVIEW**

An important route of degradation for many polymers is a photooxidation mechanism, the products of which are formed at concentrations high enough (depending on the extinction coefficient) to be observed by vibrational spectroscopy. Changes in visual appearance caused by photoageing are the result of chemical changes that occur by several different routes. Acceleration of these chemical changes cannot occur without distortion of the results, except in special cases 989577a708/iso-10640-2011

The extent of the chemical changes is better determined from the degree of accumulation in the matrix of "critical" photoproducts that, when properly chosen, will measure the main degradation pathway of the matrix. Although a chemical change such as oxidation might involve many elementary photochemical and thermal processes, it is possible to describe such chemical changes in a simplified manner through the accumulation of the critical photoproducts, chosen based on the best understanding of the ageing mechanism.^[2]

A critical photoproduct is defined as follows:

- It shall allow the main degradation pathway of the matrix to be determined.
- Ideally, it shall be a stable final product which accumulates in the matrix (but not a low-molecular-mass product or a yellowing product). It shall be chemically and photochemically inert in the matrix, shall not diffuse out, and shall accumulate linearly with time until the relevant functional property of the polymer has been completely lost.

The degradation of the polymeric matrix may also be followed by monitoring the decrease in the relevant functional groups.

FTIR spectroscopy is used to identify critical photoproducts^[3] with complementary information obtained using UV/visible spectroscopy, such as:

- the monitoring of the screening effect of organic UV-absorbers and pigments;
- the determination of changes in UV-stabilizers and absorbers and colorants;
- the determination of the origin of the sample's discoloration (degradation of colorants or degradation of the polymer material).

A list of critical photoproducts associated with the degradation of polymeric materials, and their identification, is given in Table 1.

Since the spectroscopic techniques used are mostly non-destructive (or need only small quantities of aged test specimens), it is recommended that an analysis of the kinetics of the oxidation be carried out in order to determine the rate of photooxidation and whether there is a pseudo-induction period. A procedure to measure the development of relevant functional groups that is based on FTIR spectroscopy is described in Clause 6.

The critical photoproducts of degradation must be known in order to determine the phototdegradation mechanism. Many different photoproducts can be identified by coupling infrared analysis and specific chemical derivatization (e.g. conversion of carboxylic acid groups to acid fluoride groups using SF₄ gas). Additional correlation between oxidation and in-use properties can also be carried out. Table 1 shows the critical photoproducts, how they are identified, and the properties that are affected by photoxidation for a number of different polymers.^{[4][5]}

Polymer	Critical photoproducts	Identification of critical photoproducts	Effect/properties modified	References
PVC-P, PVC-U	β -chlorocarboxylic	IR at 1 718 cm ⁻¹	Chalking	[6], [7]
	acid group		Discoloration	
	Acid chloride	IR at 1 785 cm ⁻¹	Mechanical resistance	
Extruded PE film	Carboxylic acid	IR/at 1714 cm ⁻¹ REVIEW	Tensile strength	[8], [9], [10]
	(stand	ards.iteh.ai)	Elongation	
	Vinyl unsaturation	IR at 909 cm ⁻¹	Tensile strength	
	IS	<u>O 10640:2011</u>	Elongation	
EVAC film	Carboxylic itabidi/catalog 5398957	gstendard 7 /ost/397p913e-3219-42a7-a	^{7dh} Tensile strength	[11], [12]
	5598957	7a708/iso-10640-2011	Elongation	
Moulded PP	Carboxylic acid	IR at 1 714 cm ⁻¹	Micro-cracks	[13], [14]
			Bleaching	
			Chalking	
Moulded, filled PA, PA6	Carboxylic acid	IR at 1 715 cm ⁻¹	Appearance	[15]
and PA66	Imide group	IR at 1 735 cm ⁻¹ and 1 690 cm ⁻¹	Mechanical resistance	
PET, PBT, moulded,	Carboxylic acid	IR at 1 717 cm ⁻¹ and 1 776 cm ⁻¹	Mechanical resistance	[16], [17],
filled PET and PBT	Benzoic acid	IR at 1 696 cm ⁻¹ and 1 733 cm ⁻¹		[18]
	Acid hydroxyl groups	IR at 3 260 cm ⁻¹		
PMMA and acrylics	Carboxylic acid	IR at 1 705 cm ⁻¹	Increased haze	[19]
	Hydroxyl groups	IR at 3 250 cm ⁻¹		

Table 1 — Critical photoproducts and modified properties

Polymer	Critical photoproducts	Identification of critical photoproduct	Effect/properties modified	References
PC	Carboxylic acid	IR at 1 713 cm− ¹	Mechanical properties	[20], [21]
	Photo-Fries rearrangement products:		Yellowing	
	— phenylsalicylate	IR at 1 689 cm ⁻¹ ; UV at 320 nm		
	— dihydroxybenzo- phenone	IR at 1 629 cm⁻1; UV at 355 nm		
	— biphenyl species	IR at 3 607 cm ⁻¹ , 3 547 cm ⁻¹ and 3 470 cm ⁻¹ ; Vis at 450 nm		
PUR, TPU	Carboxylic acid	IR at 1 705 cm ⁻¹	Whitening	[22], [23]
	Urethane group	IR at ~1 530 cm ⁻¹	Yellowing	
	degradation products	(band decreasing in size)	Cracks (aggravated by hydrolysis)	
Moulded ABS, PS, SAN	Butadiene degradation products (in ABS)	IR at 912 cm ⁻¹ (band decreasing in size)	Mechanical resistance	[19], [24]
	Carboxylic acid	IR at 1 717 cm ⁻¹	Appearance	
UP	Aromatic carboxylic	ANDRat 1700 cm REV	Mechanical	[25], [26]
	Carbonyl group	and ar at 15780 cm h.ai)	properties	
	Hydroxyl groups, mainly from carboxylic	IR at 3 300 cm ⁻¹ <u>ISO 10640:2011</u> /catalog/standards/sist/397e913e-321	0 4207 o7db	
	Conjugated aromatic 5, species	³⁹ 0V at 350 hm; Vis at >400 nm	7-42a/-a/QU-	
POM	Formate/ester	IR at 1 714 cm ⁻¹	Brittleness	[27]
	Alcohol from chain scission	IR at 3 475 cm ⁻¹	Mechanical properties	
PPE	Saturated carboxylic acid	IR at 1 714 cm ⁻¹	Bleaching Mechanical	[28], [29]
	Quinone methide	IR at 1 657 cm ⁻¹	properties	
	Ether group degradation products	IR at 2 736 cm ⁻¹ (band decreasing in size)		
		IR at 1 021 cm ⁻¹ (band decreasing in size)		
	Quinone methide	UV at 330 nm	Yellowing	
PEEK	Aromatic carboxylic acid	IR at 1 725 cm ⁻¹	Yellowing	[30]
	Hydroxyl groups	IR at 3 370 cm ⁻¹		
		Vis at 400 nm to 600 nm		
PEBA	Ether group	IR at 2 791 cm ⁻¹	Cracks	[2], [31]
	degradation products	IR at 1 111 cm ⁻¹ (band decreasing in size)	Mechanical properties	
	Carboxylic ester	IR at 1 725 cm ⁻¹		
		IR at 1 180 cm ⁻¹		