INTERNATIONAL STANDARD

First edition 2011-05-01

Clay geosynthetic barriers — Determination of permeability to gases

Géosynthétiques bentonitiques — Détermination de la perméabilité aux gaz

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10773:2011 https://standards.iteh.ai/catalog/standards/sist/a3a243b7-9e1c-47ec-a3c7-75b4a3bd88bd/iso-10773-2011

Reference number ISO 10773:2011(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10773:2011</u> https://standards.iteh.ai/catalog/standards/sist/a3a243b7-9e1c-47ec-a3c7-75b4a3bd88bd/iso-10773-2011

COPYRIGHT PROTECTED DOCUMENT

© ISO 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 10773 was prepared by Technical Committee ISO/TC 221, Geosynthetics.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10773:2011 https://standards.iteh.ai/catalog/standards/sist/a3a243b7-9e1c-47ec-a3c7-75b4a3bd88bd/iso-10773-2011

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10773:2011</u> https://standards.iteh.ai/catalog/standards/sist/a3a243b7-9e1c-47ec-a3c7-75b4a3bd88bd/iso-10773-2011

Clay geosynthetic barriers — Determination of permeability to gases

1 Scope

This International Standard specifies a method for measuring gas flow through a clay geosynthetic barrier.

As clay geosynthetic barriers are used to contain gases in long-term applications, this test especially focuses on the steady state of the phenomenon.

The test is conducted with nitrogen, e.g. N₂ ($\eta = 1.75 \times 10^{-5}$ Pa·s, $\rho = 1.15$ kg/m³ at 20 °C).

The test method and described apparatus allow the measurement of gas flows in the range 0,1 ml/min to 5 l/min on specimens with moisture contents in the range of 90 % to 130 %.

2 Normative references if the STANDARD PREVIEW

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 554, Standard atmospheres for conditioning and/or testing 36, Specifications

75b4a3bd88bd/iso-10773-2011

3 Principle

Clay geosynthetic barrier specimens are hydrated in a controlled manner before testing. From the plot of gas flow to moisture content under a normal load of 20 kPa and a differential pressure equal to 15 kPa, a gas flow index, $GFI_{110/15}$, is determined, which is the gas flow at 110 % moisture content.

4 Apparatus

4.1 General

The apparatus includes:

- a device allowing to load the specimen at a constant normal stress of 20 kPa (see 4.2);
- a test cell (see 4.3);
- a device to apply inlet pressure in the upstream chamber (in contact with the upper face of the sample) (see 4.4);
- a device for measuring gas flow (see 4.5).

4.2 Loading device

The loading device shall allow the application of the normal stress of 20 kPa with a tolerance of 5 % either by direct loading or with a controlled air supply.

4.3 Test cell

The test cell presented in Figure 1 shall allow:

- the testing of a specimen representative of the bulk clay geosynthetic barrier, where the diameter D_u of the flow cross-section is greater than or equal to 150 mm which makes it possible to study needlepunched and stitch geosynthetic clay barriers;
- the measurement of thickness reduction under a 20 kPa normal stress until stabilization;
- after stabilization of the thickness, the measurements of the evolution of the gas flow at the outlet with time.

The test cell shall have two chambers, one on each side of the specimen to accommodate the support material (lower chamber) and containment material (upper chamber). This material shall consist of glass beads, 1 mm to 2 mm diameter, likely to adapt to the variations of the specimen thickness. The edges of the clay geosynthetic barrier specimen shall be confined by a cylinder (part 9 in Figure 1), fixed to the base. The side sealing in the edge of the cell shall be achieved by adding a bentonite paste on top of the specimen. The absence of a leak can be checked by a soapy liquid on the circumference.

Key

- 1 gas tank
- 2 inlet pressure regulator
- 3 inlet pressure gauge
- 4 valve for inlet gas
- 5 gas tank
- 6 normal stress
- 7 piston
- 8 screws to fix cylinder to base 16 o-ring

NOTE In cases where there is a high degree of certainty that no leaks will occur, the use of the cylinder can be avoided. In such circumstances a simpler test cell may be used. An example of such a cell is provided in Annex A.

specimen

10 containment material

valve for outlet gas

gas flow meter

11 valve for purge

12 base

9

13

14

15

cylinder for specimen edge containment

Figure 1 — Scheme of gas flow apparatus

4.4 Device for applying inlet gas pressure

The application of a constant inlet gas pressure in the upstream chamber shall be ensured by a bottle of nitrogen equipped with a pressure reducer and a pressure meter connected to the piston. The inlet gas pressure shall be measured with a tolerance of 5 %.

4.5 Device for measuring gas flow

When a constant pressure difference ($\Delta p = 15 \text{ kPa}$) is imposed between both sides of the specimen, a gas flow through the specimen is generated, which shall be measured by a gas flow meter connected to the base. It shall allow the measurement of a gas flow ranging between 0,1 ml/min and 5 l/min.

5 Samples

The samples shall be clean and free from any visible defects. Samples shall be conditioned according to ISO 554 for a minimum period of 24 hours unless it can be shown that omitting this step has no influence on the test result.

The test shall then be performed in the same conditions.

6 Testing procedure

6.1 Preparation and characterisation of samples PREVIEW

6.1.1 Cut three samples of geosynthetic clay barrier and bring them to three distinct values of water content close to 110 %, e.g. 100 %, 110 % and 120 %. Ensure that the values of bentonite water content are between 90 % and 130 % and are spaced at least 20 % between the lowest and the greatest value.

https://standards.iteh.ai/catalog/standards/sist/a3a243b7-9e1c-47ec-a3c7-

Complete the following steps: 75b4a3bd88bd/iso-10773-2011

- choose a representative section from the roll, undisturbed by transport, storage, and handling.
- cut a sample sufficient to accommodate $(D_r + 0.05)$ m, where D_r is the specimen diameter.
- determine the mass per unit area, its thickness under load of the sample and the water content of the bentonite.
- immerse the sample for a controlled duration in deionized water.

NOTE Absorption curves might be prepared to determine the immersion time necessary to reach the desired water content.

- remove the excess water on both faces using an absorbing paper when removing the clay geosynthetic barrier sample from the water, and then insert the sample in a plastic bag and seal it.
- load the sample under 20 kPa for one week.
- **6.1.2** Complete the following prior to the gas flow test:
- remove the sample from the plastic bag and cut out the specimen to the diameter D_r .
- determine the specimen weight.

Quickly perform the above operations in order to prevent free swell of the specimens.

6.2 Specimen set-up

6.2.1 Fill the lower chamber of the base with glass beads (1 mm to 2 mm diameter). Protect the hole for outlet gas flow with a geotextile if required. Adjust the quantity of beads so that they fill the cavity present under the specimen.

6.2.2 Put the specimen in the base.

NOTE If the test is conducted on a stitched clay geosynthetic barrier, make sure that a representative portion of clay geosynthetic barrier is selected for testing.

6.2.3 Add bentonite paste on the edges of the specimen.

6.2.4 Assemble the base with the cylinder, sealing the joint between the base and the cylinder with bentonite paste.

6.2.5 Fill the cylinder with glass beads (1 mm to 2 mm diameter) to a thickness greater than or equal to 10 mm. Smooth off the beads.

6.2.6 Install the piston and the displacement gauge to measure the vertical deformation of specimen and beads.

6.2.7 Apply a 20 kPa load.

6.3

Flow measurement

iTeh STANDARD PREVIEW

6.3.1 Measure the volumetric gas flow for a constant pressure difference across the specimen with the downstream pressure being atmospheric pressure, and pressure applied in the upstream chamber remaining constant during the test.

https://standards.iteh.ai/catalog/standards/sist/a3a243b7-9e1c-47ec-a3c7-

6.3.2 Set the difference between upstream and downstream pressures to 15 kPa.

6.3.3 Increase the normal stress by 15 kPa in order to avoid the piston rising when one applies a differential pressure (Δp) of 15 kPa.

6.3.4 Follow the outlet volumetric gas flow versus time until its stabilisation. The time to obtain steady flow is a function of the bentonite water content.

6.4 Analysis of the specimen

6.4.1 Immediately at the end of the test, disassemble the cell and retrieve the specimen. Clean off all beads.

- **6.4.2** Weigh the specimen.
- 6.4.3 Dry the specimen and measure its dry mass.
- **6.4.4** Calculate the final water content of the specimen.

7 Calculation of the index flow GFI_{110/15}

The steady-state gas flow is measured for the three specimens at three distinct final water contents close to 110 %, e.g. 100 %, 110 % and 120 %, and the gas flux, q_V is calculated according to Equation (1):

$$q_V = \frac{Q}{A} \tag{1}$$

where

- Q is the outlet volumetric gas flow at the atmospheric pressure;
- A is the flow section of the specimen of diameter $D_{\rm u}$.

Plot the log of the gas flux, q_V , against the water content of the bentonite, w_i , as shown in Figure 2, and select the best-fit curve.

NOTE The gas flux at 110 % final water content is the gas flow index $GFI_{110/15}$, where 110 % is the water content for the index flux and 15 kPa is the differential gas pressure.

Key

- w_i water content of bentonite, percentage
- q_V gas flux, metres per second

8 Test report

The test report shall include the following information:

- a) reference to this International Standard, e.g. ISO 10773:2011;
- b) identification of the clay geosynthetic barrier, including type;
- c) name of the product;
- d) references of the sample;