# TECHNICAL SPECIFICATION

First edition 2009-10-01

Food products — Determination of the total nitrogen content by combustion according to the Dumas principle and calculation of the crude protein content —

# Part 2: iTeh STCereals, pulses and milled cereal (stproducts.iteh.ai)

Produits alimentaires Détermination de la teneur en azote total par https://standards.iteh.combustion.selon.le.principe.Dumas et calcul de la teneur en protéines 88 brutes cf72/iso-ts-16634-2-2009

Partie 2: Céréales, légumineuses et produits céréaliers de mouture



Reference number ISO/TS 16634-2:2009(E)

#### PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

# iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/TS 16634-2:2009</u> https://standards.iteh.ai/catalog/standards/sist/5497a6a9-a24e-4906-baad-88698453cf72/iso-ts-16634-2-2009



# **COPYRIGHT PROTECTED DOCUMENT**

#### © ISO 2009

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

# Contents

| Forewo     | ord                                                                                                                                                                                                                       | .iv    |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|
| Introdu    | ntroductionv                                                                                                                                                                                                              |        |  |  |
| 1          | Scope                                                                                                                                                                                                                     | 1      |  |  |
| 2          | Normative references                                                                                                                                                                                                      | 1      |  |  |
| 3          | Terms and definitions                                                                                                                                                                                                     | 1      |  |  |
| 4          | Principle                                                                                                                                                                                                                 | 2      |  |  |
| 5          | Reagents                                                                                                                                                                                                                  | 2      |  |  |
| 6          | Apparatus                                                                                                                                                                                                                 | 3      |  |  |
| 7          | Sampling                                                                                                                                                                                                                  | 3      |  |  |
| 8          | Preparation of test sample                                                                                                                                                                                                | 3      |  |  |
| 9          | Procedure                                                                                                                                                                                                                 | 4      |  |  |
| 9.1        | General                                                                                                                                                                                                                   |        |  |  |
| 9.2        | Test portion<br>Control of oxygen supply I ANDARD PREVIEW                                                                                                                                                                 | 4      |  |  |
| 9.3        |                                                                                                                                                                                                                           |        |  |  |
| 9.4<br>9.5 | Calibration (standards.iteh.ai)                                                                                                                                                                                           | 5<br>E |  |  |
| 9.5<br>9.6 | Detection and integration                                                                                                                                                                                                 |        |  |  |
|            |                                                                                                                                                                                                                           |        |  |  |
| 10         | Calculation and expression of results <u>16634-22009</u><br>Calculation <u>https://standards.iteh.ai/catalog/standards/sist/5497a6a9-a24e-4906-baad-</u><br>Expression of results <u>88698453cf72/iso-ts-16634-2-2009</u> | 6      |  |  |
| 10.1       | Calculation https://standards.iten.av/catalog/standards/stst/3497aba9-a24e-4900-baad-                                                                                                                                     | 6      |  |  |
| 10.2       | Expression of results                                                                                                                                                                                                     | 6      |  |  |
| 11         | Precision                                                                                                                                                                                                                 | 7      |  |  |
| 11.1       | Interlaboratory tests                                                                                                                                                                                                     |        |  |  |
| 11.2       | Repeatability                                                                                                                                                                                                             |        |  |  |
| 11.3       | Reproducibility                                                                                                                                                                                                           |        |  |  |
| 11.4       | Critical difference                                                                                                                                                                                                       |        |  |  |
| 11.5       | Uncertainty                                                                                                                                                                                                               | 8      |  |  |
| 12         | Test report                                                                                                                                                                                                               | 8      |  |  |
| Annex      | A (informative) Flowchart for a basic Dumas apparatus                                                                                                                                                                     | 9      |  |  |
| Annex      | B (informative) Schematic diagrams of suitable types of Dumas apparatus                                                                                                                                                   | 10     |  |  |
| Annex      | C (informative) Equipment calibration                                                                                                                                                                                     | 13     |  |  |
| Annex      | D (informative) Examples of factors for converting nitrogen content to protein content                                                                                                                                    | 15     |  |  |
| Annex      | E (informative) Results of interlaboratory tests                                                                                                                                                                          | 16     |  |  |
| Bibliog    | raphy                                                                                                                                                                                                                     | 23     |  |  |

# Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such documents, a technical committee may decide to publish other types of document:

- an ISO Publicly Available Specification (ISO/PAS) represents an agreement between technical experts in an ISO working group and is accepted for publication if it is approved by more than 50 % of the members of the parent committee casting a vote; TANDARD PREVIEW
- an ISO Technical Specification (ISO/TS) represents an agreement between the members of a technical committee and is accepted for publication if it is approved by 2/3 of the members of the committee casting a vote.

## ISO/TS 16634-2:2009

An ISO/PAS or ISO/TS is reviewed after three years in order to decide whether it will be confirmed for a further three years, revised to become an international Standard, or withdrawn. If the ISO/PAS or ISO/TS is confirmed, it is reviewed again after a further three years, at which time it must either be transformed into an International Standard or be withdrawn.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/TS 16634-2 was prepared by the European Committee for Standardization (CEN) in collaboration with ISO Technical Committee TC 34, *Food products*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

ISO 16634 consists of the following parts, under the general title *Food products* — *Determination of the total nitrogen content by combustion according to the Dumas principle and calculation of the crude protein content*:

- Part 1: Oilseeds and animal feeding stuffs
- Part 2: Cereals, pulses and milled cereal products [Technical Specification]

# Introduction

For a long time, the Kjeldahl method has been the most frequently used method for the determination of the protein content of food products. However, in recent years, the Kjeldahl method has increasingly been replaced by the Dumas method, which is faster and does not use dangerous chemicals. Although the principles of the two methods are different, both measure the nitrogen content of the product. Nitrogen content can be converted into protein content by using an appropriate factor. The value of this factor varies depending on the relative amounts of different proteins and their amino-acid composition in a given product.

Neither the Dumas nor the Kjeldahl method distinguishes between protein and non-protein nitrogen. In most cases, results obtained by the Dumas method are slightly higher than those of the Kjeldahl method. This is due to the fact that the Dumas method measures almost all of the non-protein nitrogen, whereas the Kjeldahl method measures only a part of it.

Taking into consideration the fact that the protein content of a product calculated by both methods only approximates to the true value, it is a matter of discretion which one is accepted. The most appropriate solution should be the use of a second factor for the elimination of the systematic error caused by the non-protein nitrogen content of the different products. However, this second factor has to be determined for each product, like the existing factors which indicate the ratio of the protein content to the nitrogen content.

# iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/TS 16634-2:2009</u> https://standards.iteh.ai/catalog/standards/sist/5497a6a9-a24e-4906-baad-88698453cf72/iso-ts-16634-2-2009

# iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/TS 16634-2:2009</u> https://standards.iteh.ai/catalog/standards/sist/5497a6a9-a24e-4906-baad-88698453cf72/iso-ts-16634-2-2009

# Food products — Determination of the total nitrogen content by combustion according to the Dumas principle and calculation of the crude protein content —

# Part 2: Cereals, pulses and milled cereal products

# 1 Scope

This part of ISO 16634 specifies a method for the determination of the total nitrogen content and the calculation of the crude protein content of cereals, pulses and milled cereal products.

This method, like the Kjeldahl method (see References [1] and [6]), does not distinguish between protein nitrogen and non-protein nitrogen. For the calculation of the protein content, various conversion factors are used (see Annex D).

# iTeh STANDARD PREVIEW

# 2 Normative references (standards.iteh.ai)

The following referenced documents are indispensable of or the application of this document. For dated references, only the tedition dited applies Fordundated references, the latest edition of the referenced document (including any amendments) applies 2/iso-ts-16634-2-2009

ISO 712, Cereals and cereal products — Determination of moisture content — Reference method

ISO 6540, Maize — Determination of moisture content (on milled grains and on whole grains)

ISO 24557, Pulses — Determination of moisture content — Air-oven method

# 3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

## 3.1

## nitrogen content

mass fraction of the total nitrogen determined by the procedure specified in this part of ISO 16634

NOTE The mass fraction is expressed as a percentage.

#### 3.2

## crude protein content

**nitrogen content** (3.1) multiplied by a factor, usually 5,7 for wheat, rye and their milled products and 6,25 for others products falling within the scope of this part of ISO 16634

NOTE The factors for calculation of the crude protein content from the total nitrogen content are derived from the Kjeldahl method, which is the reference method for the determination of total nitrogen content. As the method specified in this part of ISO 16634 uses the same factors as the Kjeldahl method, the validity of these factors has to be verified due to the slight difference in the results obtained with the Kjeldahl and Dumas methods.

# 4 Principle

Samples are converted to gases by heating in a combustion tube. Interfering components are removed from the resulting gas mixture. The nitrogen compounds in the gas mixture, or a representative part of them, are converted to molecular nitrogen which is quantitatively determined by a thermal-conductivity detector. The nitrogen content is then calculated by a microprocessor.

# 5 Reagents

Use only reagents of recognized analytical grade or reagents of equivalent purity as specified by instrument manufacturers. Except for the reference materials (see 5.12), all reagents shall be free from nitrogen.

**5.1** Carrier gas(es): use either 5.1.1 or 5.1.2.

**5.1.1 Carbon dioxide**, as pure as possible, but with a minimum CO<sub>2</sub> volume fraction of 99,99 %.

**5.1.2** Helium, as pure as possible, but with a minimum He volume fraction of 99,99 %.

**5.2 Oxygen**, as pure as possible, but with a minimum O<sub>2</sub> volume fraction of 99,99 %.

**5.3** Sulfur dioxide and halogen absorbent, to eliminate any sulfur from the sample [e.g. lead chromate (PbCrO<sub>4</sub>) or steel wool].

# 5.4 Copper oxide/platinum catalyst, for the post-combustion tube. EVIEW

Platinum catalyst [5 % of Pt on alumina  $(Al_2O_3)$ ] is blended with CuO in the ratio 1 part:7 parts or 1 part:8 parts in accordance with the manufacturer's recommendations.

To prevent separation as a result of the different bulk densities of the two materials, it is recommended not to prepare the mixture before filling/the tube but to pour the platinum catalyst and copper oxide simultaneously into the post-combustion tube using a suitable fundel fraction to the post-combustion tube using a suitable fundel fraction to the post-combustion tube using a suitable fundel fraction to the post-combustion tube using a suitable fundel fraction to the post-combustion tube using a suitable fundel fraction to the post-combustion tube using a suitable fundel fraction to the post-combustion tube using a suitable fundel fraction to the post-combustion tube using a suitable fundel fraction to the post-combustion tube using a suitable fundel fraction to the post-combustion tube using a suitable fundel fraction to the post-combustion tube using a suitable fundel fraction to the post-combustion tube using a suitable fundel fraction to the post-combustion tube using a suitable fundel fraction to the post-combustion tube using a suitable fundel fraction to the post-combustion tube using a suitable fundel fraction to the post-combustion tube using a suitable fundel fraction to the post-combustion tube using a suitable fundel fraction to the post-combustion tube using a suitable fundel fraction to the post-combustion tube using a suitable fundel fraction to the post-combustion tube using a suitable fundel fraction to the post-combustion tube using a suitable fraction tube using a suitable fraction to the post-combustion tube using a suitable fraction to the post-combustion tube using a suitable fraction tube using a s

## 5.5 Silver or copper wool.

This shall be disaggregated before being inserted into the post-combustion or reduction tube.

5.6 Silica (quartz) or glass wool or cotton wool, as recommended by the instrument manufacturer.

5.7 Copper or tungsten (wire, cuttings, turnings or powder), for the reduction tube.

The use of copper or tungsten in one of these forms can improve the precision of analytical results for samples with low nitrogen contents (about 1 % mass fraction).

**5.8** Diphosphorus pentoxide  $(P_2O_5)$  or granulated magnesium perchlorate  $[Mg(CIO_4)_2]$ , or another suitable drying agent, to fill the drying tubes.

5.9 Hollow corundum spheres or aluminium oxide pellets, for the combustion tube.

**5.10** Copper oxide (CuO), as filling material for the combustion tube.

**5.11** Sodium hydroxide (NaOH), on a support material.

**5.12** Aspartic acid  $(C_4H_7NO_4)$  or ethylenediaminetetraacetic acid  $(C_{10}H_{16}N_2O_8)$  or glutamic acid  $(C_5H_9NO_4)$  or hippuric acid  $(C_9H_9NO_3)$  standard, or other suitable reference materials with a known, constant, certified nitrogen content.

The minimum recovery should preferably be 99 % mass fraction.

5.13 Light petroleum, with a boiling range between 30 °C and 60 °C, or acetone or ethanol.

# 6 Apparatus

Usual laboratory equipment and, in particular, the following:

6.1 Analytical balance, capable of weighing to the nearest 0,000 1 g.

6.2 Grinding device, appropriate to the nature of the sample.

6.3 Sieve, of nominal opening size 800 µm or 1 mm, made of non-ferrous material.

6.4 Crucibles (e.g. made of stainless steel, quartz, ceramic material or platinum) or tin capsules or nitrogen-free filter paper, suitable for the Dumas apparatus used.

NOTE 1 Several instruments provided with an automatic sampler are commercially available.

NOTE 2 Some solid samples (e.g. powders) can be pressed to form pellets.

**6.5 Dumas apparatus**<sup>1)</sup>, fitted with a furnace able to maintain a given temperature greater than or equal to 850 °C, with a thermal-conductivity detector and suitable device for signal integration.

Suitable Dumas apparatus operates according to the general flowchart given in Annex A, although different arrangements and components may be used **DARD PREVIEW** 

NOTE Schematic diagrams of three commercially available instruments are shown as examples in Figures B.1, B.2 (Standards.iten.al)

To avoid leaks, the sealing O-rings shall be slightly lubricated with high-vacuum grease prior to installation.

https://standards.itch.ai/catalog/standards/sist/5497a6a9-a24e-4906-baad-Experience has shown that it is important to remove fingerprints from tubes, using a suitable solvent (e.g. acetone), before inserting them in the furnace.

# 7 Sampling

A representative sample should have been sent to the laboratory. It should not have been damaged or changed during transport or storage.

Sampling is not part of the method specified in this part of ISO 16634. Recommended sampling methods are given in ISO 24333<sup>[7]</sup> for cereals and cereal products.

## 8 Preparation of test sample

The test sample shall be prepared from the laboratory sample in such a way that a homogeneous test sample is obtained.

Using a suitable grinding device (6.2), grind the laboratory sample. Generally, pass the ground material through a sieve (6.3) of nominal opening size 800  $\mu$ m for small sample sizes (under 300 mg) or a sieve of nominal opening size 1 mm for larger sample sizes (300 mg or more). Mills that produce particle sizes meeting the specifications given in Table 1 will give acceptable results.

<sup>1)</sup> Elementar Analysensysteme, Sumika Chemical Analysis Service and LECO Instruments produce suitable equipment available commercially. This information is given for the convenience of users of this Technical Specification and does not constitute an endorsement by ISO of this equipment. Equivalent products may be used if they can be shown to lead to the same results.

| Nominal size of sieve openings | Amount passing through sieve |
|--------------------------------|------------------------------|
| μm                             | % mass fraction              |
| 710                            | 100                          |
| 500                            | 95 to 100                    |
| 200                            | 85 or less                   |

#### Table 1 — Required particle size

Grinding may result in moisture loss and therefore the moisture content of the ground sample should preferably also be determined when reporting nitrogen or protein contents on a dry-matter or constant-moisture basis. Determination of the moisture content shall be carried out in accordance with ISO 712 for cereals other than maize, ISO 6540 for maize and ISO 24557 for pulses.

The grinder efficiency can be checked by replicate preparation of ground samples of a 2+1 mixture of maize and soya seeds. The expected coefficient of variation should be less than 2 % mass fraction.

# 9 Procedure

# 9.1 General

Carefully follow the manufacturer's instructions for instrument set-up, optimization, calibration and operation. Switch the instrument on and allow it to stabilize as defined in local procedures.

standards.iteh.ai

An instrument performance test should be carried out daily, using the reference material (5.12). The recovery of nitrogen should be > 99,0 % mass fraction. ISO/TS 16634-2:2009

## 9.2 Test portion

https://standards.iteh.ai/catalog/standards/sist/5497a6a9-a24e-4906-baad-88698453cf72/iso-ts-16634-2-2009

Weigh, to the nearest 0,000 1 g, at least 0,1 g of the test sample into a crucible or tin capsule or nitrogen-free filter paper (6.4). For samples low in protein (< 1 % mass fraction), the amount of the test portion can be increased up to 3,5 g, depending on the type of Dumas equipment being used and on the nature of the sample.

Depending on the type of equipment used, if the sample contains over 17 % mass fraction of moisture, it may be necessary to dry it before analysis.

Lower masses may be necessary for very high protein content samples or when only very small amounts of sample are available. In the case of masses less than 0,1 g, a second (validation) determination shall be performed.

# 9.3 Control of oxygen supply

Control the oxygen supply, in particular the flow, in accordance with the instructions of the material supplier.

With each series of nitrogen content determinations, conduct as many blank runs as necessary to stabilize the equipment, using for each run an equivalent mass of sucrose in place of the test portion. The sucrose blank provides the amount of nitrogen that is introduced in the form of atmospheric air trapped within a powdered organic material. Use the mean value of the blank determinations as an error correction in the calculation of the nitrogen content of each test sample.

# 9.4 Calibration

For long-term instrument calibration, use pure compounds with a known, constant nitrogen content, e.g. aspartic acid (see 5.12), as standards. Analyse in duplicate three pure compounds, each in three different amounts chosen as a function of the measurement range for the actual samples.

To prepare a calibration curve, carry out at least five determinations with different amounts of the same compound, choosing the compound and the amounts used in such a way that the curve obtained will cover the range of nitrogen contents in the samples to be analysed.

If the test portion contains more than 200 mg of nitrogen, the calibration curve is likely to be non-linear. In the non-linear section, short segments can nevertheless be used for calibration purposes. To ensure the reliability of the curve in these segments, the amount of standard used shall be increased in steps corresponding to 1 mg to 5 mg of nitrogen over the segments.

Calibration can also be performed using standard aqueous solutions.

Check the calibration at least three times at the beginning of a series of analyses and then after every 15 to 25 samples, analysing either one of the standards (see 5.12) or a sample of known value. The value obtained for the nitrogen mass fraction shall differ by less than 0,05 % from the expected value. If it does not, repeat the calibration check after checking instrument performance.

# 9.5 Determination

With the instrument operating in the stable state, introduce the test portion in accordance with the manufacturer's instructions.

During the analysis, the following processes take place in the instrument (see Figure B.1, B.2 or B.3).

The test portion is quantitatively combusted/under standard conditions at a temperature of at least 850 °C, depending on the instrument and the material being analysed a6a9-a24e-4906-baad-

## 88698453cf72/iso-ts-16634-2-2009

Volatile decomposition products (mainly molecular nitrogen, nitrogen oxides, carbon dioxide and water vapour) are transported by the carrier gas (see 5.1) through the instrument.

Nitrogen oxides are reduced to molecular nitrogen, and the excess oxygen is bound to the copper or tungsten (5.7) in the reduction column.

Water is removed by drying tubes filled with magnesium perchlorate, diphosphorus pentoxide or another drying agent (see 5.8). If carbon dioxide is used as the carrier gas (see 5.1.1), it is removed by being passed over a suitable absorbent, e.g. sodium hydroxide (5.11) on a suitable support material.

Interfering compounds (e.g. volatile halogen and sulfur compounds) are removed by absorbents (5.3) or chemical reagents, e.g. silver wool (5.5) or sodium hydroxide (5.11) on a suitable support material.

The remaining gas mixture, consisting of nitrogen and carrier gas, is passed through a thermal-conductivity detector.

# 9.6 Detection and integration

For quantitative nitrogen determination, the instrument uses a sensitive thermal-conductivity cell that is optimized for the carrier gas employed and that may have automatic zero adjustment between measurements on successive test portions. After amplification and analogue/digital conversion of the detector signal, the data obtained are processed by peripheral microprocessor hardware.

# 10 Calculation and expression of results

# **10.1 Calculation**

## 10.1.1 Nitrogen content

The results for the total nitrogen content,  $w_N$ , expressed as a percentage mass fraction, are usually available in the form of instrument printouts.

#### 10.1.2 Crude protein content

The correction factor,  $F_{c}$ , is obtained from Equation (1):

$$F_{c} = \frac{100 - w_{H_{2}O, 1}}{100 - w_{H_{2}O, 2}}$$
(1)  
**iTeh STANDARD PREVIEW**

where

(standards.iteh.ai) $w_{H_2O,1}$  is the moisture mass fraction, expressed as a percentage, before grinding;

ISO/TS 16634-2:2009

 $w_{H_2O,2}$  is the moisture mass fraction, expressed as a percentage, after grinding ad-

88698453cf72/iso-ts-16634-2-2009

The crude protein content,  $w_{p}$ , expressed as a percentage mass fraction, is obtained from Equation (2):

$$w_{\rm p} = w_{\rm N} F F_{\rm c} \tag{2}$$

where

- $w_{\rm N}$  is the nitrogen content, expressed as a percentage mass fraction, of the sample at its natural moisture content;
- *F* is the generally agreed conversion factor for the product analysed, equal to 5,7 for wheat, rye and their milled products and 6,25 for other products falling within the scope of this part of ISO 16634 (see Annex D).

If requested, the crude protein content expressed as a percentage mass fraction of the dry matter,  $w_{pd}$ , can be calculated from Equation (3):

$$w_{\rm pd} = \frac{100w_{\rm p}}{100 - w_{\rm H_2O}} \tag{3}$$

where  $w_{H_2O}$  is the moisture content, expressed as a percentage mass fraction, determined in accordance with ISO 712, ISO 6540 or ISO 24557.

## **10.2 Expression of results**

Express the result to three significant figures (e.g. 9,53 % or 20,5 % or 35,4 %).