ETSI GR IP6 008 V1.1.1 (2017-06)

IPv6-based Internet of Things Deployment of IPv6-based Internet of Things

Disclaimer

The present document has been produced and approved by the IPv6 Integration (IP6) ETSI Industry Specification Group (ISG) and represents the views of those members who participated in this ISG. It does not necessarily represent the views of the entire ETSI membership. Reference DGR/IP6-0008

> Keywords IoT, IPv6

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from: <u>http://www.etsi.org/standards-search</u>

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at <u>https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx</u>

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI. The content of the PDF version shall not be modified without the written authorization of ETSI. The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2017.

All rights reserved.

DECT[™], PLUGTESTS[™], UMTS[™] and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members. **3GPP[™]** and LTE[™] are Trade Marks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. **oneM2M** logo is protected for the benefit of its Members

GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Contents

Intelle	Intellectual Property Rights				
Forew	vord	4			
Moda	Modal verbs terminology				
Execu	tive summary	4			
1	Scope	5			
2	References	5			
2.1	Normative references	5			
2.2	Informative references	5			
3	Abbreviations	7			
4	User defined clause(s) from here onwards	9			
4.1	Introduction	9			
4.1.1	The IoT in 2020: 50 Billion of connected devices	9			
4.1.2	IoT connectivity: Wired and Wireless	10			
4.1.3	Constraint devices and constraint networks	11			
4.1.3.1	The Unique Requirements of Constrained Networks	11			
4.1.3.2	Energy consumption in the IoT	11			
4.2	The IoT landscape	11			
4.2.1	The Convergence of IT and OT.	11			
4.2.2	The market segmentation	12			
4.3	Motivation for IPv6 in the IoT	12			
4.3.1	Technical Motivation	12			
4.3.1.1	Main driver	12			
4.3.1.2	Addressability	12			
4.3.1.3	Security Mechanism	13			
4.3.1.4	IP up to the end device/end to end principle	13			
4.3.1.5	Flow identification	13			
4.3.2	Standardization	14			
4.3.2.1	IETF standardization effort (IPvo for the IoT)	14			
4.3.2.2	IEC and other SDOs	14			
4.4	Impact of the IoT on the IPv6 technology and protocols	14			
4.4.1	Routing Protocols: Roll	14			
4.4.2	Transport protocols: CoRE	16			
4.4.3	IPv6 Neighbour Discovery	17			
4.4.4	Adaptation Layers: 6Lo	17			
4.4.5	LPWAN	18			
4.5	Specific market deployment considerations	20			
4.5.1	Industrial Internet: Deterministic Networking DetNet/6TiSCH	20			
4.6	Lesson learned: IPv6 for the Smart Grid	21			
4.6.1	Power Automation use case	21			
4.6.2	Field Area Network use case for Electric Distribution Network and smart metering	21			
4.6.2.1	A Standardized and Flexible IPv6 Architecture for Field Area Networks: Smart-Grid Last-Mile				
	Infrastructure	21			
4.6.2.2	The Key Advantages of Internet Protocol	22			
4.6.2.3	An IPv6 Distribution Network Architecture	23			
4.6.2.4	The Technical Components of IPv6 Smart-Grid Last-Mile Infrastructure	24			
4.6.2.5	Network Management for Smart Meters	26			
4./	Conclusions	27			
Anne	x A: Authors & contributors	28			
Anne	x B: Bibliography	29			
Histor	у	30			

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

, 00

Foreword

This Group Report (GR) has been produced by ETSI Industry Specification Group (ISG) IPv6 Integration (IP6).

Modal verbs terminology

In the present document "**should**", "**should not**", "**may**", "**need not**", "**will**", "**will not**", "**can**" and "**cannot**" are to be interpreted as described in clause 3.2 of the <u>ETSI Drafting Rules</u> (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Executive summary

The present document summarizes the advantages and benefits of IPv6 in the deployment of IoT solutions.

It first analyses the IoT landscape, its evolution and its principal characteristics. It then focuses on the principal motivations for IPv6 in this environment both from a technical standpoint as well as from a standardization effort.

The next step is to underline the impact of the IoT toward the IPv6 specifications and its necessary evolutions.

The present document also describes an existing very large deployment of IPv6 in the Smart Grid area (multi-millions of devices).

1 Scope

The present document outlines the motivation for IPv6 in IoT, the technical challenges to address IoT on constrained devices and networks, the impact on the IPv6 technology and protocols, the technology guidelines, the step by step process, the benefits, the risks, as applicable to IoT domains including: M2M, Energy, Industrial, Mining, Oil and gas, Smart city, Transportation (including EVs), etc.

IPv6-based IoT in this context refers to the connectivity network layers needed to support the communication between things. It is understood that a complete IoT system may use of an IoT architecture including but not necessarily an abstraction layer part of an IoT platform. The description of such IoT platform is out of the scope of the present document.

2 References

2.1 Normative references

Normative references are not applicable in the present document.

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

- [i.1] IEEE 802.15.4[™]: "IEEE 802.15 WPAN[™] Task Group 4 (TG4)".
- NOTE: Available at http://www.ieee802.org/15/pub/TG4.html.
- [i.2] IEEE 1901.2aTM-2015: "IEEE Standard for Low-Frequency (less than 500 kHz) Narrowband Power Line Communications for Smart Grid Applications - Amendment 1".
- NOTE: Available at https://standards.ieee.org/findstds/standard/1901.2a-2015.html.
- [i.3] IETF RFC 6296: "IPv6-to-IPv6 Network Prefix Translation".
- NOTE: Available at <u>https://tools.ietf.org/html/rfc6296</u>.
- [i.4] IETF RFC 4291: "IP Version 6 Addressing Architecture".
- NOTE: Available at https://tools.ietf.org/html/rfc4291.html.
- [i.5] IETF RFC 4193: "Unique Local IPv6 Unicast Addresses".
- NOTE: Available at <u>https://tools.ietf.org/html/rfc4193</u>.
- [i.6] IETF RFC 6690: "Constrained RESTful Environments (CoRE) Link Format".
- NOTE: Available at <u>https://tools.ietf.org/html/rfc6690</u>.
- [i.7] IETF RFC 7252: "The Constrained Application Protocol (CoAP)".
- NOTE: Available at <u>https://tools.ietf.org/html/rfc7252</u>

- [i.8] IETF RFC 7390: "Group Communication for the Constrained Application Protocol (CoAP)".
- NOTE: Available at https://tools.ietf.org/html/rfc7390.
- [i.9] IETF RFC 7641: "Observing Resources in the Constrained Application Protocol (CoAP)".
- NOTE: Available at https://tools.ietf.org/html/rfc7641.
- IETF RFC 4861: "Neighbor Discovery for IP version 6 (IPv6)". [i.10]
- NOTE: Available at https://tools.ietf.org/html/rfc4861.
- IETF RFC 2460: "Internet Protocol, Version 6 (IPv6) Specification". [i.11]
- NOTE: Available at https://tools.ietf.org/html/rfc2460.
- IETF RFC 4944: "Transmission of IPv6 Packets over IEEE 802.15.4 Networks". [i.12]
- NOTE: Available at https://tools.ietf.org/html/rfc4944.
- IETF RFC 6282: "Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based [i.13] Networks".
- NOTE: Available at https://tools.ietf.org/html/rfc6282.
- IETF RFC 6775: "Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal [i.14] 10-26 Area Networks (6LoWPANs)". 2017-06
- NOTE: Available at https://tools.ietf.org/html/rfc67
- IETF RFC 7428: "Transmission of IPv6 Packets over ITU-T G.9959 Networks". [i.15]
- NOTE: Available at https://tools.ietf.org/html/rfc7428
- IETF RFC 6437: "IPv6 Flow Label Specification". [i.16]
- Available at https://tools.ietf.org/html/rfc6437 NOTE:
- [i.17] IETF RFC 5072: "IP Version 6 over PPP".
- NOTE: Available at https://tools.ietf.org/html/rfc5072.
- IETF draft-ietf-roll-applicability-ami-15: "Applicability Statement for the Routing Protocol for [i.18] Low Power and Lossy Networks (RPL) in AMI Networks".
- NOTE: Available at https://tools.ietf.org/html/draft-ietf-roll-applicability-ami-15.
- [i.19] IEEE 802.11™: "IEEE Standard for Information technology--Telecommunications and information exchange between systems Local and metropolitan area networks--Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.
- [i.20] IEEE 802.15.4gTM: "IEEE Standard for Local and metropolitan area networks--Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 3: Physical Layer (PHY) Specifications for Low-Data-Rate, Wireless, Smart Metering Utility Networks".
- [i.21] IETF RFC 3027: "Protocol Complications with the IP Network Address Translator".
- [i.22] IEEE 802.15.4eTM: "IEEE Standard for Local and metropolitan area networks--Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC sublayer".
- [i.23] IEC 62357-200:2015: "Power systems management and associated information exchange -Part 200: Guidelines for migration from Internet Protocol version 4 (IPv4) to Internet Protocol version 6 (IPv6)".
- [i.24] IETF RFC 7668: "IPv6 over BLUETOOTH(R) Low Energy".

[i.25]	Recommendation ITU-T G.9959: "Short range narrow-band digital radiocommunication transceivers - PHY, MAC, SAR and LLC layer specifications".
[i.26]	IEEE 802.11ah TM : "IEEE Standard for Information technologyTelecommunications and information exchange between systems - Local and metropolitan area networksSpecific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 2: Sub 1 GHz License Exempt Operation".
[i.27]	Recommendation ITU-T G.9903: "Narrowband orthogonal frequency division multiplexing power line communication transceivers for G3-PLC networks".
[i.28]	Recommendation ITU-T G.9905: "Centralized metric-based source routing".
[i.29]	draft-ietf-6lo-nfc: "Transmission of IPv6 Packets over Near Field Communication".
[i.30]	draft-ietf-6tisch-architecture: "An Architecture for IPv6 over the TSCH mode of IEEE 802.15.4".
[i.31]	IEEE 802.3 TM : "IEEE Standard for Ethernet.
[i.32]	IETF RFC 6272: "Internet Protocols for the Smart Grid".
[i.33]	IEEE 802.16 TM : "IEEE Standard for Air Interface for Broadband Wireless Access Systems".
[i.34]	IEC 61968: "Application integration at electric utilities - System interfaces for distribution management".
[i.35]	IEC 61850: "Communication networks and systems for power utility automation".
[i.36]	IEC 60870: "Telecontrol equipment and systems".
[i.37]	ANSI C12.22: "Protocol Specification For Interfacing to Data Communication Networks".
[i.38]	IEEE 802.1X TM : "IEEE Standard for Local and metropolitan area networksPort-Based Network Access Control".
[i.39]	IEEE 802.11i TM : "IEEE Standard for information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Amendment 6: Medium Access Control (MAC) Security Enhancements".
[i.40]	IETF RFC 2464: "Transmission of IPv6 Packets over Ethernet Networks.
[i.41]	draft-ietf-6lo-dectaile." Transmission of IPv6 Packets over DECT Ultra Low Energy".
[i.42]	draft-ietf-6lo-6lobac: "Transmission of IPv6 over MS/TP Networks".

3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

3GPP	Third Generation Partnership Project
AAA	Authentication, Authorization, and Accounting
AMI	Advanced Metering Infrastructure
ANSI	American National Standards Institute
API	Application Programmable Interface
ARIN	American Registry for Internet Numbers
ATM	Asynchronous Transfer Mode
AVB	Audio Video Bridging
B2B	Business-To-Business
BACNET	Building Automation and Control Networks
BT-LE	Bluetooth - Low Energy
CapEx	Capital Expenditure
CoAP	Constrained Application Protocol
CoRE	Constrained Restful Environments

COSEM	Companion Specification for Energy Metering
CPU	Central Processing Unit
DA	Distributed Automation
DAD	Dunlicate Address Detection
DCC	Data Communications Company
DECT	Digital Enhanced Cordless Telephone
DECT-ULE	DECT Liltra Low Energy
DHCP	Dynamic Host Configuration Protocol
DIC	Data Link Control
DLC	Davice Language Message Specification
DNS	Domain Name System
DPI	Deep Packet Inspection
DR	Deep 1 deket hispection
DSO	Distribution System Operator
DTIS	Distribution System Operator
E-IGPP	Extended - Interior Gateway Routing Protocol
FTSI	European Telecommunications Standards Institute
FTY	Extended Transmission metric
EIA	Electric Vehicle
	Eactory Automation
FAN	Field Area Network
	Field Alea Network
FAR	Field Area Pouter
FD	Frame Palay
CDDS	Conoral Dackat Dadio Sorvico
GSM	Clobal System for Mobile (communications)
USM	Home Area Network
HAN UTTD	HumarTayt Transfer Protocol
	Internet Assigned Number Association
IANA	Internet Control Massage Protocol Control March 1
	Information and Communication Tasketland
	Information and Communication Technology
	Intrusion Detection Service
IEC	International Electro technical Commission
IEEE	Institute of Electrical and Electronic Engineers
IESG	Internet Engineering Steering Group
	Internet Engineering Task Forces
101 ID	Internet Of I ning
IP ID 4	Internet Protocol
IPv4	Internet Protocol version 4
IPv6	Internet Protocol Version 6
IPX	Internetwork Packet exchange
IS-IS	Intermediate System to Intermediate System
ISP	Internet Service Provider
	Information Technology
	International Telecommunication Union
LLN	Low Power and Lossy Network
LOKA	LOng RAnge
LPWA	Low Power Wide Area
LPWAN	Low Power and Wide Area Networking
LTE	Long Term Evolution
LIE-MIC	LTE-Machine Type Communication
	Low Throughput Network
M2M	Machine to Machine
MAC	Media Access Control
MDMS	Meter Data Management System
MP2P	Multi-Point-to-Point
MP-BGP	Multi Protocol-Border Gateway Protocol
MS/TP	Master-Slave/Token-Passing
MTC	Machine Type Communication
MTU	Maximum Transmission Unit
NAN	Neighbour Area Network
NB-IoT	Narrow Band-IoT

NB-PLC	Narrow Band-Power Line Communications
NFC	Near Field Communication
NMS	Network Management System
NOC	Network Operation Centre
NPT	Network Prefix Translation
OMB	Office of Management and Budget
OPEX	OPerational EXpenditure
OSI	Open Systems Interconnection
OSPF	Open Shortest Path First
ОТ	Operational Technology
P2P	Point-to-Point
PC	Personal Computer
PD	Prefix Delegation
PDR	Packet Delivery Ratio
PHY	PHYsical layer
PIM	Protocol Independent Multicast
PLC	Power Line Communications
PNNI	Private Network to Network Interface
QoS	Quality of Service
RAM	Random Access Memory
RF	Radio Frequency
RFC	Request For Comments
RIP	Routing Information Protocol
RIR	Regional Internet Registry
RoLL	Routing over LLN
RPL	Routing Protocol for LLN
RS	Recommended Standards
SAE	Society of Automotive Engineers
SEP	Standard Energy Profile
SMB	Standard Management Board Start Start Start Start
SNA	Systems Network Architecture
SNMP	Simple Network Management Protocol
SSH	Secure SHell
TC	Technical Committee
TCP	Transport Control Protocol
TSCH	Time Slotted Channel Hopping 🗬
TSN	Time Sensitive Networking
UDP	User Datagram Protocol
UNB	Ultra Narrow Band
VPN	Virtual Private Network
WAN	Wide Area Network
WG	Working Group
WIA	Wireless Industrial Automation
WI-SUN	Wireless-Smart Ubiquitous Network
WLAN	Wireless Local Area Network
WPAN	Wireless Personal Area Network
WSN	Wireless Sensor Network

4 User defined clause(s) from here onwards

4.1 Introduction

4.1.1 The IoT in 2020: 50 Billion of connected devices

The number of Internet Connected devices will cross the incredible total of 50 billion by 2020.

The connectivity fabric of IP is used to enable more and more efficient context exchange with a broader range of devices and things. Thus, results the Internet of Things.

Projected to increase device counts by orders of magnitude over the next few decades, IoT's impact cannot be overstated. Already enabling a rich set of new capabilities in Smart Cities, Smart Grid, Smart Buildings, and Smart Manufacturing, IoT stands to transform virtually every part of modern life that automation or visibility may improve.

4.1.2 IoT connectivity: Wired and Wireless

No matter the precise forecast, the sheer tsunami of devices coming online in the next months, years, and decades ensures that the future is not exclusively, or even significantly, wired.

Wireless with its adaptability and ease will inevitably dominate the IoT landscape. Exactly which wireless technology or technologies will be used remains relatively unclear, as many new technologies are still emerging, while others are still early in the standards process.

The challenges IPv6 poses to high bandwidth wireless networks are well-known. However, low bandwidth links, like LPWAN (Low Power Wide Area Network), do require optimization and broadly adapt and adopt techniques like IPv6 header compression.

Clause 4.4 is describing the IETF technologies to adapt IPv6 to different constraint media. This problem is not specific to the use of IPv6 but due primarily to the scale of IoT deployment.

The following list summarizes the main different wireless technologies used for IOT:

- IEEE 802.15.4 [i.1] WPAN: The IEEE 802.15 TG4 was chartered to investigate a low data rate solution with multi-month to multi-year battery life and very low complexity. It is operating in an unlicensed, international frequency band. Potential applications are sensors, interactive toys, smart badges, remote controls, and home automation.
- IEEE 802.11 [i.19] WLAN (Wireless Local Area Network).
- LPWAN (Low Power and Wide Area Network).
- Cellular Networks (NB-IoT, 5G).

New PLC (Power Line Communications) technologies are also emerging like IEEE 1901.2a [i.2]. These technologies offer the capability to use the same wire for power supply and communication media.

4.1.3 Constraint devices and constraint networks

4.1.3.1 The Unique Requirements of Constrained Networks

Devices deployed in the context of Neighbour Area Networks (NANs) are often constrained in terms of resources and often named IP smart objects. Smart-object networks are also referred to as low-power and lossy networks (LLNs) considering their unique characteristics and requirements.

11

As a contrast with typical IP networks, in which powerful routers are interconnected by highly stable and fast links, LLNs are usually interconnected by low-power, low-bandwidth links (wireless and wired) operating between a few kbps and a few hundred kbps and forming a meshed network for helping to ensure proper operations. In addition to providing limited bandwidth, it is not unusual to see on such links the packet delivery ratio (PDR) oscillating between 60 % and 90 %, with large bursts of unpredictable errors and even loss of connectivity at intervals. Those behaviours can be observed on both wireless (such as IEEE 802.15.4g [i.20]) and Power Line Communications (PLC) (such as IEEE 1901.2a [i.2]) links, where packet delivery variation may happen during the course of one day.

4.1.3.2 Energy consumption in the IoT

Some estimates of IoT have placed the number as high as 50 %, the devices that will be constrained by battery power and also require long-range, wide-area connectivity. Managing these volumes of batteries is no small task, especially given requirements from end-users in utilities and manufacturing asking for 10 to 20 years of battery life.

The sheer size of IoT market and associated communications infrastructure intensifies the importance of energy efficiency awareness. Without significant thought and effort, it is easy to reach very high levels of aggregate power consumption with these technologies. Normalizing the interface fabrics to IPv6 architectures and eliminating needless protocol translation functions is an enormous step towards overall efficiency and prudence.

4.2 The IoT landscape

4.2.1 The Convergence of IT and OT

Converging Networks for the Industrial Internet

Operational Technology (OT) often refers to industrial networks, which focus on highly reliable, secure and deterministic networking. In OT environments, deterministic networks are characterized as providing a guaranteed bandwidth with extremely low packet loss rates, bounded latency, and low jitter. OT networks are typically used for monitoring systems and supporting control loops, as well as movement detection systems for use in process control (i.e. continuous manufacturing) and factory automation (i.e. discrete manufacturing), and protection systems in the SmartGrid.

Due to its different goals, OT has evolved in parallel but in a manner that is radically different from Information Technology/Information and Communications Technology (IT/ICT), which relies on selective queuing and discarding of IP packets to achieve end-to-end flow control over the Internet.

The motivation behind the so-called Industrial Internet is that a single percentile point of operational optimization may save billions of dollars across multiple industries. This optimization requires collecting and processing of huge amounts of missing measurements utilizing widely distributed OT sensing and IT analytics capabilities.

In order to avoid skyrocketing operational costs, the Industrial Internet should share the same infrastructure (network and management) as the deterministic OT flows. This means that the Industrial Internet vision can only be achieved through the convergence of IT and OT, whereby the network becomes capable of emulating the properties of deterministic OT circuits in the same fabric that serves traditional best effort IP applications.

This convergence is made possible by for example the newly introduced open standards for Deterministic Networks that are developed to enable traffic that is highly sensitive to jitter, requires bounded latency in the worst case scenario, and has a high degree of operational criticality so that packet loss should be reduced dramatically, over a converged switched packet fabric.