International Standard

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEXACINA OPPAHUSALUAR OPPAHUSALUAR OCTAHDAPTUSALUMOORGANISATION INTERNATIONALE DE NORMALISATION

Short pitch transmission precision roller chains and chain wheels

Chaînes de transmission de précision à rouleaux à pas courts et roues dentées correspondantes

First edition – 1982-12-01 **iTeh STANDARD PREVIEW** (standards.iteh.ai) <u>ISO 606:1982</u> Multips://standards.iteh.ai/catalog/standards/sist/a42bb5a8-44d3-4694-ace8a4d3b4ab4ca7/iso-606-1982

Descriptors : chains, roller chains, short pitch chains, sprockets, chain pitch, dimensions, designation, marking.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

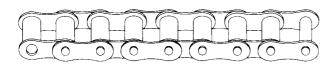
International Standard ISO 606 was developed by Technical Committee ISO/TC 100, EVEW Chains and chain wheels for power transmission and conveyors, and was circulated to the member bodies in June 1981.

It has been approved by the member bodies of the following countries i 082

	https://standards.itel	h.ai/catalog/standards/sist/a42bb5a8-44d3-4694-ace8-
Austria	Germany, F. R.	a4d3b4 Romaniaso-606-1982
Belgium	India	South Africa, Rep. of
Brazil	Italy	Spain
China	Japan	Sweden
Czechoslovakia	Mexico	United Kingdom
Egypt, Arab Rep. of	Netherlands	USA
France	Poland	USSR

No member body expressed disapproval of the document.

This International Standard cancels and replaces ISO Recommendation R 606-1967, of which it constitutes a technical revision, as well as its Addendum 1-1974.


Short pitch transmission precision roller chains and chain wheels

Introduction 0

The provisions of this International Standard have been arrived at by including sizes of chains used by the majority of countries in the world, and by unifying dimensions, strength and other data in respect of which current national standards were differing and at the same time eliminating certain side ranges listed in some national standards for which it was considered a universal usage had not been established. I I CII 🔿 I Al

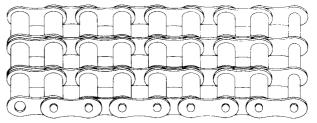
The whole applicational field open to this medium of transmission has been covered by the ranges of chains already established. To achieve this the sizes of 12,7 mm (0.5 in) to 76,2 mm (3.0 in) pitch inclusive have been duplicated by the inclusion of chains derived from standardss originating iten at a western and ards/sist/a42bb5a8-44d3-4694-acc8hemisphere and centred around ANSI (suffix A) and brathe 7/iso-206 Reference other hand, by chains representing the unification of the principal standards originating in Europe and centred around BSI (suffix B), the two being complementary for the coverage of the widest possible field of application.

The part of this International Standard covering chain wheels represents the unification of all the relevant national standards in the world and includes, in particular, complete tolerances relating to tooth form which are absent from most current national standards.

Roller chain, simple

The dimensions of chain specified ensure complete interchangeability of any given size and provide interchangeability of individual links of chains for repair purposes.

Scope and field of application 1


This International Standard applies to short pitch precision roller chains of simple and multiplex construction suitable for the mechanical transmission of power and allied applications, together with the tooth gap forms and rim profiles of their associated chain wheels. It covers dimensions, tolerances, measuring loads and minimum breaking loads.

ISO 286/1, ISO system of limits and fits - Part 1 : General, tolerances and deviations.¹⁾

Chains 3

3.1 Nomenclature

Figures 1, 2 and 3 do not define the actual form of the chain plates.

Roller chain, multiple (triplex)

Figure 1 - Roller chains

At present at the stage of draft. (Revision of ISO/R 286-1962.)

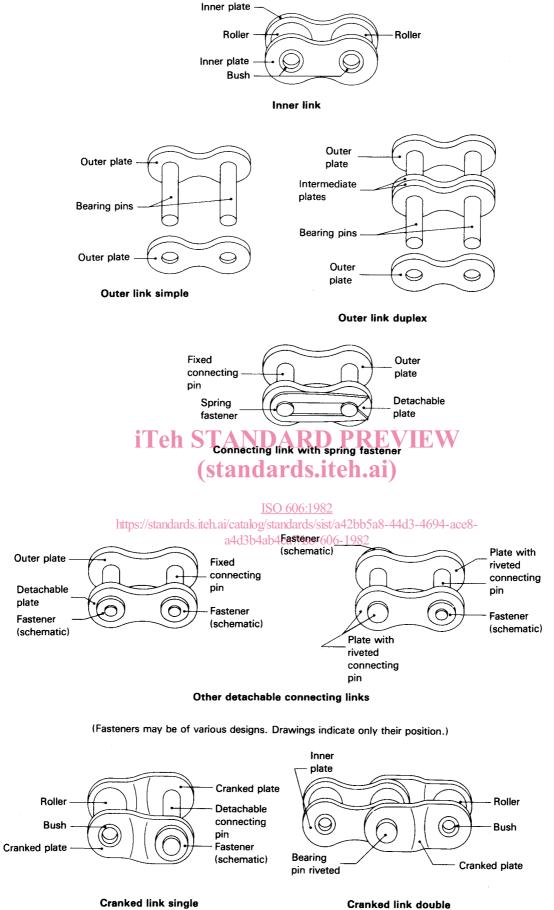


Figure 2 - Types of links

NOTE - Dimensional definitions are contained in the key to tables 1, 1M, 2 and 2M.

3.2 Designation

Transmission precision roller chains shall be designated by the standard ISO chain number given in tables 1, 1M, 2 and 2M; the first two digits expressing the pitch in sixteenths of an inch. The ISO chain numbers in tables 1 and 1M are supplemented by a hyphenated suffix 1 for simple chain, 2 for duplex chain, 3 for triplex chain, etc., for example 16B-1, 16B-2, 16B-3, etc.

3.3 Dimensions

Chains shall conform to the dimensions given in tables 1, 1M, 2 and 2M. Maximum and minimum dimensions are specified to ensure interchangeability of links as produced by different makers of chain. They represent limits for interchangeability, but are not the actual tolerances that should be used in manufacture.

3.4 Minimum ultimate tensile strength

3.4.1 The minimum tensile strength is the minimum strength of samples tested to destruction in tensile loading, as defined in 3.4.2. This strength is not a working load. It is intended primarily as a comparative figure between chains of various constructions. For application information, the manufacturers or their published data should be consulted

3.5 Proof loading

It is recommended that all chains should be proof loaded to one-third of the minimum tensile breaking load given in tables 1, 1M, 2 and 2M.

3.6 Length accuracy

Finished chains shall be measured after proof loading (where applicable) but before lubricating.

The standard length for measurement shall be a minimum of :

a) 610 mm (24 in) for ISO chain numbers 05B to 12B and 081 to 085 inclusive,

b) 1 220 mm (48 in) for ISO chain numbers 16A to 72B inclusive,

and shall terminate with an inner link at each end.

The chain shall be supported throughout its entire length and the measuring load in tables 1, 1M, 2 and 2M shall be applied.

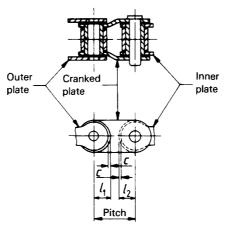
3.4.2 A tensile load, not less than that specified in table 1 to the load, not less than that specified in table 1 to the limits of tolerance : 1M, 2 or 2M, is applied slowly to the ends of a chain length,

mitting free movement on both sides of the chain centre line (in 606:19 The length accuracy of chains which have to work in parallel the normal plane of articulation ps://standards.iteh.ai/catalog/standards/shall/be within! the limits above but matched in agreement with a4d3b4ab4ca7/iso-the manufacturer. Failure shall be considered to have occurred at the first point

Failure shall be considered to have occurred at the first point where increasing extension is no longer accompanied by increasing load, i.e. the summit of the load/extension diagram.

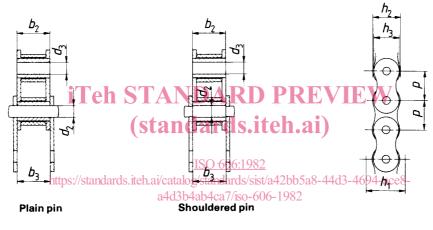
containing at least five free pitches, by means of shackles per-

Tests in which failures occur adjacent to the shackles should be disregarded.

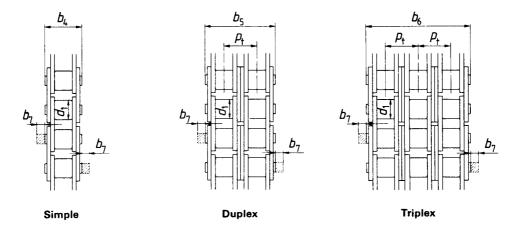

3.4.3 The tensile test shall be considered a destructive test. Even though a chain may not visibly fail when subjected to the minimum breaking load, it will have been stressed beyond the yield point and will be unfit for service.

3.7 Marking

The chain shall be marked with :


a) the manufacturer's name or trade mark;

b) the ISO chain number (see column 1 of tables 1, 1M, 2 and 2M).


Cranked link

Dimension c represents the clearance between the cranked link plates and the straight plates available during articulation.

Sections through chain

The chain path depth h_1 is the minimum depth of channel through which the assembled chain will pass.

The overall width of a chain with a joint fastener is equal to the width over the bearing pins b_4 , b_5 or b_6 plus b_7 for riveted pin end (or + 1,6 b_7 for headed pin end) if fastener is on one side only, or + 2 b_7 if fastener is on both sides.

The width over bearing pins for chains wider than triplex is equal to $b_4 + p_t$ (number of strands in chain -1).

Figure 3 - Key to tables 1, 1M, 2 and 2M

Table 1 – (Inch-pound units) Chain dimensions, measuring loads and breaking loads of base chains

		×			8	8	8	8	8	8	8	200	8	8	8	500	8	8	8	8	8	8	8	8	8	8			
8	g	Triplex	min.	ନ୍ଦ	2 500	5 60	000000	10 000	14 700	15 000	21 000	19 50	37 500	28 50	58 500	43.50	84 000	66 000	114 000	87 00	150 000	114 000	234 000	177 000	337 500	270 000	+	1	1
24	Breaking load	Duplex	min.	ସା	1 750	3 800	6 200	2 000	008 6	10 000	14 000	13 000	25 000	19 000	000 6E	29 000	56 000	44 000	76 000	58 000	100 000	76 000	156 000	118 000	225 000	180 000	244 000	320 000	404 000
ន		Simple	min.	qI	1 000	2 000	3 100	4 000	4 900	5 000	7 000	6 500	12 500	9 500	19 500	14 500	28 000	22 000	38 000	29 000	50 000	38 000	78 000	<u>59</u> 000	112 500	000 06	122 000	160 000	202 000
22	ad	Triplex	I	qi	33	48	8	22	132	132	189	8 <u>5</u>	336	336	525	525	750	750	1 020	1 020	1 350	1 350	2 100	2 100	3 000	3 000	ł		-
21	Measuring load	Duplex	I	qI	77	32	ß	29	88	88	126	126	224	224	350	350	200	200	680	68 0	006	006	1 400	1 400	2 000	2 000	2 740	3 580	4 540
20	ě	Simple	I	Ð	1	16	58	28	4	4	ន	ន	112	112	175	175	250	250	340	340	450	450	700	700	1 000	1 000	1 370	1 790	2 270
19	Addit- ional width for joint fastener 2)	I	b ₇ тах.	. E	0.12	0.13	0.15	0.15	0.16	0.16	0.18	0.18	0.21	0.21	0.24	0.24	0.26	0.26	0.29	0.29	0.31	0.31	0.40	0.40	0.41	0.41	0.46	0.51	0.56
18	r st	Triplex	b ₆ тах.	.⊑	0.79	1.34	1 8	1.77	2.28	2.08	2.86	2.43	3.62	3.93	4.45	4.57	5.58	5.91	6.00	7.25	7.20	7.26	8.80	8.95	10.68	11.09	I	I	I
17	Width over bearing pins	Duplex	<i>b</i> 5 тах.	in	0.57	0.94	1.27	1.22	1.57	1.43	1.96	1.66	2.47	2.68	3.03	3.14	3.79	4.01	4.08	4.91	4.89	4.96	5.98	6.10	7.22	7.50	8.71	9.87	11.17
16	<u>ه ۲</u>	Simple	b4 max.	.u	0.34	0.53	0.70	0.67	0.86	0.7	1.06	0.88 88	1.32	1.42	1.62	1.70	2.00	2.10	2.16	2.56	2.58	2.65	3.16	3.25	3.76	3.90	4.51	5.15	5.80
15	Width between outer plates	I	b3 min.	ц.	0.193	0.341	0.442	0.450	0.547	0.528	0.701	0.620	0.802	1.007	1.083	1.147	1.398	1.498	1.466	1.839	1.782	1.799	2.163	2.200	2.672	2.783	3.207	3.628	4.092
14	Width over inner link	t	b2 max.	Ē	0.188	0.336	0.440	0.445	0.545	0.523	0.699	0.615	0.890	1.002	1 .081	1.142	1.396	1.493	1.464	1.834	1.780	1.794	2.161	2.195	2.670	2.778	3.202	3.623	4.087
13	Trans- verse pitch	htt	ps://st	and	a z i	0.403	0.566		24 4 4 4 4 4 4	6 9		8 4 2 2	1 280 1771		8 8 60	୍ କ୍ଷ୍ୟୁ 6-1	28 98	2	1.924	2: <u>345</u>	2.305	2.305	2.80	2.846	98 98 98 98	3.591	4.197	4.720	5.365
12	žα	1	J	Ë	0.003	0.003	0.003	0.003	0.004	0.004	0.004	0.004	0.005	0.005	0.006	0.006	0.007	0.007	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
=	Cranked link dimensions 1)	I	l ₂ min.	Ē	0.146	0.170	0.240	0.241	0.300	0.300	0.360	0.328	0.480	0.439	0.600	0.547	0.719	0.691	0.839	0.768	0.958	0.874	1.195	1.093	1.433	1.317	1.599	1.853	2.101
6		I	l1 min.	. E	0.146	0.170	0.208	0.223	0.260	0.280	0.311	0.328	0.415	0.439	0.518	0.547	0.622	0.691	0.725	0.768	0.828	0.874	1.033	1.093	1.238	1.317	1.599	1.853	2.101
6	Outer inter- mediate plate depth	Ι	h ₃ max.	,c	0.280	0.325	0.410	0.430	0.513	0.540	0.615	0.635	0.820	0.830	1.025	1.040	1.230	1.315	1.435	1.460	1.640	1.665	2.050	2.085	2.460	2.515	3.065	3.550	4.080
80	Inner plate depth	t	<i>ћ</i> 2 тах.	. <u>⊆</u>	0.280	0.325	0.475	0.465	0.594	0.580	0.712	0.635	0.950	0.830	1.188	1.040	1.425	1.315	1.663	1.460	1.900	1.665	2.375	2.085	2.850	2.515	3.065	3.550	4.080
٢	Chain path depth	1	h ₁ min.	. <u>c</u>	0.290	0.335	0.485	0.475	0.604	0.590	0.722	0.645	0.960	0.840	1.200	1.050	1.439	1.328	1.680	1.475	1.919	1.682	2.399	2.106	2.879	2.540	3.096	3.586	4.121
9	Bush bore	I	d_3 min.	'n	0.093	0.131	0.158	0.177	0.202	0.202	0.236	0.227	0.314	0.328	0.377	0.403	0.439	0.578	0.502	0.628	0.564	0.703	0.783	0.903	0.939	1.153	1.353	1.553	1.753
ß	Bearing pin body diameter	I	d2 max.	. <u>c</u>	0.091	0.129	0.156	0.175	0.200	0.200	0.234	0.225	0.312	0.326	0.375	0.401	0.437	0.576	0.500	0.626	0.562	0.701	0.781	0.901	0.937	1.151	1.351	1.551	1.751
4	Width between inner plates	I	b ₁ min.	L	0.118	0.225	0.309	0.305	0.370	0.380	0.495	0.460	0.620	0.670	0.744	0.770	0.993	1.000	0.993	1.220	1.242	1.220	1.490	1.500	1.864	1.800	2.100	2.400	2.700
3	Roller diam- eter	I	d ₁ max.	'n	0.197	0.250	0.313	0.335	0.400	0.400	0.469	0.475	0.625	0.625	0.750	0.750	0.875	1.000	1.000	1.100	1.125	1.150	1.562	1.550	1.875	1.900	2.125	2.500	2.850
2	Pitch	1	р	. <u>e</u>	0.315	0.375	0.500	0.500	0.625	0.625	0.750	0.750	1.000	1.000	1.250	1.250	1.500	1.500	1.750	1.750	2.000	2.000	2.500	2.500	3.000	3.000	3.500	4.000	4.500
1	ISO chain number				05B	06B	V80	88	10A	10B	12A	12B	16A	16B	20A	20B	24A	24B	28A	88	32A	328	40A	408	48A	48B	568	64B	72B

ISO 606-1982 (E)

NOTE - There are narrow versions of the simple chain, 08B and 10B respectively, having widths between inner plates of 5,21 mm (0.205 in) min. and 6,48 mm (0.255 in) min. which are used for motorcycle applications. 2) The actual dimensions will depend on the type of fastener used but they should not exceed the dimensions in this column, details of which should be obtained by the purchaser from the manufacturer.

1) Cranked links are not recommended for use on chains which are intended for onerous applications.

5

.

su
chaii
f base
ofb
sp
loa
cing
real
q pu
s an
ads
j jo
urin
meas
s, m
ion
nens
din
ain
Che
nits
ic u
letr
5
1 M
Table

		Ţ			6	0	0	0	0	0	0	0	0	0	Q	9	0	0	0	P	0	0	2	ç	9	8			٦
8	Ţ.	Triplex	min.	da N	1 110	2 490	4 140	4 450	6 540	6 670	9 340	8 670	16 680	12 680	26 020	19 35	37 370		50 710	38.70			ğ	78 730		120 100			1
24	Breaking load	Duplex	min.	da N	780	1 690	2 760	3 110	4 360	4 450	6 230	5 780	11 120	8 450	17 350	12 900	24 910	19 570	33 810	25 800	44 480	33 810	062 69	52 490	100 080	80 070	108 540	142 340	179 710
ន	æ	Simple	min.	da N	0440	068	1 380	1 780	2 180	2 220	3 110	2 890	5 560	4 230	8 670	6 450	12 460	9 790	16 900	12 900	22 240	16 900	34 700	26 240	50 040	40 030	54 270	71 170	89 850 89
z	ad	Triplex	1	da N	15	21	37	37	59	<u>8</u>	8	8	149	149	234	234	334	334	454	454	601	601	934	934	1 334	1 334	1	1	I
21	Measuring load	Duplex	I	da N	10	14	25	25	8	ଞ୍ଚ	8	8	<u>10</u>	100	156	156	222	22	302	302	400	6 0	623	623	88	008	1 219	1 592	2 019
20	Ň	Simple	I	da N	2	7	12	12	8	8	78	83	20	23	78	78	111	111	151	151	200	200	311	311	445	445	609	296	1 010
19	Addit- ional width for joint fastener 2)	1	<i>b</i> 7 тах.	шш	3,1	3,3	3,9	3,9	4,1	4,1	4,6	4,6	5,4	5,4	6,1	6,1	6,6	6,6	7,4	7,4	7,9	7,9	10,2	10,2	10,5	10,5	11,7	13,0	14,3
81		Triplex	<i>b</i> б тах.	mm	19,9	34,0	46,7	44,9	57,9	52,8	72,6	61,7	91,9	6'66	113,0	116,1	141,7	150,2	152,4	184,3	182,9	184,5	223,5	227,2	271,3	281,6	I	ļ	1
17	Width over bearing pins	Duplex	$b_{\rm 5}$ max.	шш	14,3	23,8	32,3	31,0	39'9	36,2	49,8	42,2	62,7	68,0	77,0	79,7	96,3	101,8	103,6	124,7	124,2	126,0	151,9	154,9	183,4	190,4	221,2	250,8	283,7
16	<u>ة</u> <	Simple	b ₄ max.	Ē	8,6	13,5	17,8	17,0	21,8	19,6	26,9	22,7	33,5	36,1	41,1	43,2	50,8	53,4	54,9	65,1	65,5	67,4	80,3	82,6	95,5	98,1	114,6	130,9	147,4
15	Width between outer plates		b_3 min.	шш	4,90	8,66	11,23	11,43	13,80	13,41	17,81	15,75	22,66	25,58	27,51	29,14	35,51	38,05	37,24	46,71	45,26	45,70	54,94	55,88	67,87	70,69	81,46	92,15	103,94
14	Width over inner link	I	<i>b</i> 2 тах.	шш	4,77	8,53	11,18	11,30	13,84	13,28	17,75	15,62	22,61	25,45	27,46	29,01	35,46	37,92	37, 19	46,58	45,21	45,57	57,88 (8)	56,75	67,82	70,56	81,33	92,02	103,81
13	Trans- verse pitch	I	$P_{\rm t}$	hệr	2 ⁹ 8	10224	14.38	13-92	s.J	16,59	22,78	19546	6262 162	31,88	35,76		190 1849	48,36	48,87		280	58,55	77,555	62,4	828	91:21	106.60	119,89	136,27
12	¥ ø	I	c	E E	0,08	0,08	0,08	0,08	0,10	0,10	0,10	0,10	0,13	0,13	0,15	0,15	0,18	0,18	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20
11	Cranked link dimensions 1)	I	t2 min.	шш	3,71	4,32	6,10	6,12	7,62	7,62	9,14	8,33	12,19	11,15	15,24	13,89	18,26	17,55	21,31	19,51	24,33	22,20	30,35	27,76	36,40	33,45	40,61	47,07	53,37
10	0	T	1, nin.	шш	3,71	4,32	5,28	5,66	6,60	7,11	7,90	8,33	10,54	11,15	13,16	13,89	15,80	17,55	18,42	19,51	21,03	22,20	26,24	27,76	31,45	33,45	40,61	47,07	53,37
6	Outer inter- mediate plate depth	I	h ₃ max.	mm	7,11	8,26	10,41	10,92	13,03	13,72	15,62	16,13	20,83	21,08	26,04	26,42	31,24	33,40	36,45	37,08	41,66	42,29	52,07	52,96	62,48	83 88	77,85	90,17	103,63
8	Inner plate depth	I	h2 max.	mm	7,11	8,26	12,07	11,81	15,09	14,73	18,08	16,13	24,13	21,08	30,18	26,42	36,20	33,40	42,24	37,08	48,26	42,29	60,33	52,96	72,39	83,88	77,85	90,17	103,63
7	Chain path depth	1	h ₁ min.	шш	7,37	8,52	12,33	12,07	15,35	14,99	18,34	16,39	24,39	21,34	30,48	26,68	36,55	33,73	42,67	37,46	48,74	42,72	60,93	53,49	73,13	64,52	78,64	91,08	104,67
6	Bush bore	1	d3 min.	mm	2,36	3,33	4,01	4,50	5, 13	5,13	5,99	5,77	7,97	8,33	9,58	10,24	11,15	14,68	12,75	15,95	14,32	17,86	19,89	22,94	23,85	29,29	34,37	39,45 39,45	44,53
5	Bearing pin body diameter	1	d2 max.	шш	2,31	3,28	3,96	4,45	5,08	5,08	5,94	5,72	7,92	8,28	9,53	10, 19	11,10	14,63	12,70	15,90	14,27	17,81	19,84	22,89	23,80	29,24	34,32	39,40	4 8
4	Width between inner plates	1	<i>b</i> 1 піп.	шш	3,00	5,72	7,85	7,75	9,40	9,65	12,57	11,68	15,75	17,02	18,90	19,56	25,22	25,40	25,22	30,99	31,55	30,99	37,85	38,10	47,35	45,72	53,34	60,96	68,58
3	Roller diam- eter	I	d1 max.	шш		6,35			10,16	10,16	11,91	12,07	15,88	15,88	19,05	19,05	22,23	25,40	25,40	27,94	28,58	29,21	39,68	39,37	47,63	48,26	53,98	8,50 8	72,39
2	Pitch	1	d	шш	8,00	9,525	12,70	12,70	15,875	15,875	19,05	19,05	25,40	25,40	31,75	31,75	38,10	38,10	44,45	44,45	50,80	50,80	83,50 8	63,50	76,20	76,20	88 ,90	101,60	114,30
1	ISO chain number				8 90				10A	10B	12A	12B	16A	168	20A	20B	24A	248	28A	28B	32A	328	40A	40B	48A	48B		64B	
_					L									_															_

1) Cranked links are not recommended for use on chains which are intended for onerous applications.

2) The actual dimensions will depend on the type of fastener used but they should not exceed the dimensions in this column, details of which should be obtained by the purchaser from the manufacturer.

NOTE - There are narrow versions of the simple chain, 088 and 108 respectively, having widths between inner plates of 5,21 mm (0.265 in) min. and 6,48 mm (0.255 in) min. which are used for motorcycle applications.

· · ·		1	T	r –					<u> </u>	·	,		.		
18	Breaking Ioad	min.	વ	1 800	2 200 2 600	3 500	1 500		18	Breaking load	min.	da N	800	980 150	1 1 20
17	Mea- suring load	I	q	28	% %	8	28		17	Mea- suring load	I	da N	12,5	12 ک 12 ج	10 F
16	Addi- tional width for joint fastener 3)	<i>b</i> 7 тах.	.=	0.06	0.06	0.06	0.08		16	Addi- tional width for joint fastener 3)	<i>b</i> 7 тах.	шщ	1,5	1 1	, с
15	Width over bearing pins	b ₄ max.	. <u>e</u>	0.40	0.32	0.58	0.55	chains ¹⁾	15	Width over bearing pins	b4 max.	Ē	10,2	8,2 17.9	14.8
14	Width between outer plates	b3 min.	.⊑	0.233	0.186 0.316	0.351	0.362	moped o	14	Width between outer plates	ες iii	E E	5,93	4, /3 8 03	8 93 9 93
13	Width over inner link	b2 max.	.E	0.228	0.181 0.311	0.346	0.357	cycle and	13	Width over inner link	b2 max.	шш	5,80	4, 00 190, 12	880
12	Isions	3	Ë	0.003	0.003 0.003	0.003	0.003	breaking loads of cycle and moped chains ¹)	12	sions	J	ш	80,0	8,00	0.08
11	Cranked link dimensions 2)	ζ2 min.	j	9.211	0.211	0.227	0.240		Ð	tehosions	E	L.	5,36 5,36	0, 30 5,36	5,77
10	Crank	4 min.	Ē	0.211	0.211	0.227	0.208	andards	10	teh šai)	l1 min.	mm	5,36	5.36 2,36	5.77
6	Outer plate depth	^E ⁴)S://: .⊑	0.390	0.390	0.439	0.390	<u>150606:1</u> i/catalog/stagedards a4d3b4ab4ga7/isc	<u>98</u> 2 /sis)-6(t/a42bb5ฏ& 44d3)6-19 8 2 ซี ซี	-4694 ^{V3} -4	-ac	9,9%	10,30	11.15
8	Inner plate depth	ћ ₂ тах.	'n	062:0	0.390	0.439	0.390	i/catalog/standards a4d3b4ab4aa7/isc see voise u	8	Inner plate depth	h2 max.	mm	9,91 0.01	10,30	11,15
7	Chain path depth	h1 min.	'n	0.400	0.400 0.416	0.449	0.400	ן dimensi	7	Chain path depth	h1 min.	mm	10,17	10.56	11.41
9	Bush bore	d_3 min.	'n	0.146	0.146 0.183	0.163	0.143	iits) Chair	9	Bush bore	d3 min.	mm	3,71	3,1 4,14	4,14
5	Bearing pin body diameter	d2 max.	Ŀ.	0.144	0.144 0.161	0.161	0.141	Table 2M — (Metric units) Chain dim	S	Bearing pin body diameter	d2 тах.	шш	3,66 3,66	8,69 9,04	4,09
4	Width between inner plates	b_1 min.	'n	0.130	0.094 0.192	0.192	0.251	s 2M - (t	4	Width between inner plates	h nim	mm	3,30	4 8, 8	4,88
3	Roller diameter	d ₁ тах.	'n	0.305	0.305	0.305	0.306	Table	3	Roller diameter	d1 max.	mm	7,75 7.75	7,75	7,75
2	Pitch	d	Ľ	0.500	0.500	0.500	0.500		2	Pitch	d	mm	12,70	12.70	12.70
-	ISO chain number			081	88	084	085		-	ISO chain number	ł		180 190	3 8	88

Table 2 - (Inch-pound units) Chain dimensions, measuring loads and breaking loads of cycle and moped chains¹⁾

1) These chains are recommended in the single version only.

2) Cranked links are not recommended for use on chains which are intended for onerous applications.

The actual dimensions will depend on the type of fastener used but they should not exceed the dimensions in this column, details of which should be obtained by the purchaser from the manufacturer. 4) It is recommended that the joints for derailleur chain should always be riveted. ŝ

ISO 606-1982 (E)

7