# INTERNATIONAL STANDARD

First edition 2012-09-15

# Ships and marine technology — Large yachts — Deck crane and access gangways strength requirements

Navires et technologie maritime — Grands yachts — Exigences de résistance des grues de pont et des passerelles d'accès

# iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 11209:2012 https://standards.iteh.ai/catalog/standards/sist/6e22d5b1-bd1c-4fea-bd0b-2747b02ff9c3/iso-11209-2012



Reference number ISO 11209:2012(E)

## iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 11209:2012 https://standards.iteh.ai/catalog/standards/sist/6e22d5b1-bd1c-4fea-bd0b-2747b02ff9c3/iso-11209-2012



#### **COPYRIGHT PROTECTED DOCUMENT**

#### © ISO 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Page

#### Contents

| Foreword                         |                                                                           | iv       |
|----------------------------------|---------------------------------------------------------------------------|----------|
| 1                                | Scope                                                                     | 1        |
| 2                                | Terms and definitions                                                     | 1        |
| 3<br>3.1<br>3.2<br>3.3           | General requirements<br>Service class<br>Applied loads<br>Design criteria |          |
| 4<br>4.1<br>4.2                  | Strength check<br>Metallic materials<br>Composite materials               | 11       |
| 5                                | Buckling check                                                            | 13       |
| 6                                | Deflection check                                                          | 13       |
| 7                                | Connections                                                               | 13       |
| 8<br>8.1<br>8.2<br>8.3           | Miscellaneous<br>Ropes<br>Fittings<br>Foundations                         | 13<br>14 |
| 9                                | Rest condition Teh STANDARD PREVIEW                                       | 14       |
| Bibliography (standards.iteh.ai) |                                                                           |          |
|                                  | (Stanuar us.itch.ar)                                                      |          |

<u>ISO 11209:2012</u>

https://standards.iteh.ai/catalog/standards/sist/6e22d5b1-bd1c-4fea-bd0b-2747b02ff9c3/iso-11209-2012

#### Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 11209 was prepared by Technical Committee ISO/TC 8, *Ships and marine technology*, Subcommittee SC 12, *Ships and marine technology — Large yachts*.

# iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 11209:2012 https://standards.iteh.ai/catalog/standards/sist/6e22d5b1-bd1c-4fea-bd0b-2747b02ff9c3/iso-11209-2012

# Ships and marine technology — Large yachts — Deck crane and access gangways strength requirements

#### 1 Scope

This International Standard specifies requirements for the minimum structural scantling of lifting appliances for large yachts.

It is applicable to the following lifting appliances:

- cranes;
- access gangways (including side ladders);
- access gangways when used as a lifting appliance.

This International Standard is not applicable to lifting means for life saving appliances, which are covered by recognized rules and/or international regulations.

This International Standard covers mainly the following aspects:

- service class; iTeh STANDARD PREVIEW
- applied loads;
- design criteria;

ISO 11209:2012

(standards.iteh.ai)

- allowable stresses; https://standards.iteh.ai/catalog/standards/sist/6e22d5b1-bd1c-4fea-bd0b-2747b02ff9c3/iso-11209-2012
- strength check;
- elastic stability check;
- connections.

#### 2 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

#### 2.1

large yacht

ship with a hull length, L<sub>H</sub>, equal to or higher than 24 m, used for sport or pleasure and commercial operations

NOTE For a definition of *L*<sub>H</sub>, see ISO 8666.

#### 2.2

#### lifting appliance

means of loading/unloading weights on board, excluding people loads

#### 2.3

#### access gangway

means of embarking/disembarking people

2.4

#### life saving appliance

survival craft

EXAMPLE Life boat, rescue boat, inflatable life raft, rigid life raft.

#### 2.5

#### favourable weather condition

steady wind up to Beaufort Force 4

#### 2.6

#### calm water

sea state with waves up to 0,3 m significant height

#### 2.7

#### wave significant height

mean height of the highest one third of the waves

NOTE Wave significant height approximately corresponds to the wave height estimated by an experienced observer.

#### 2.8

#### jib type crane

crane (either rotating or not) with arm (either hoistable or not)

#### 2.9

#### gantry crane

beam or carriage, with lifting device, running on guides

#### 2.10

#### light service class

class used to refer to lifting of general equipment and supplies

# 3 General requirements

## (standards.iteh.ai)

#### 3.1 Service class

#### ISO 11209:2012

For the purposes of this International Standard / a light/service class shall be considered band the following load amplification factor M (service factor) shall be applied  $9c_3/iso-11209-2012$ 

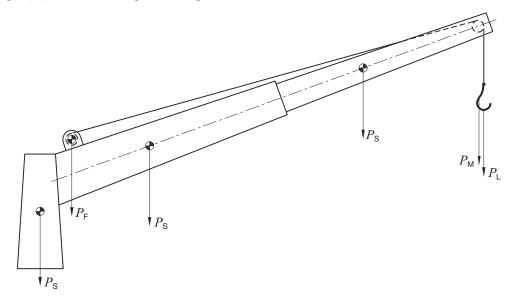
*M* = 1,05

#### 3.2 Applied loads

#### 3.2.1 General

The following load evaluation takes into account that the lifting appliances are to be operated in favourable weather conditions and in calm waters.

The following loads shall be considered:

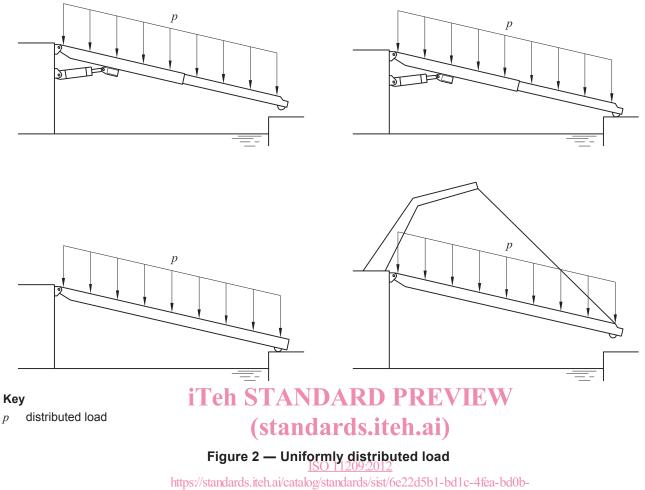

- main loads acting statically on the lifting appliance structure;
- inertia forces due to lifted load vertical movement;
- inertia forces due to lifting appliance movements;
- static loads due to yacht trim and list.

#### 3.2.2 Main loads

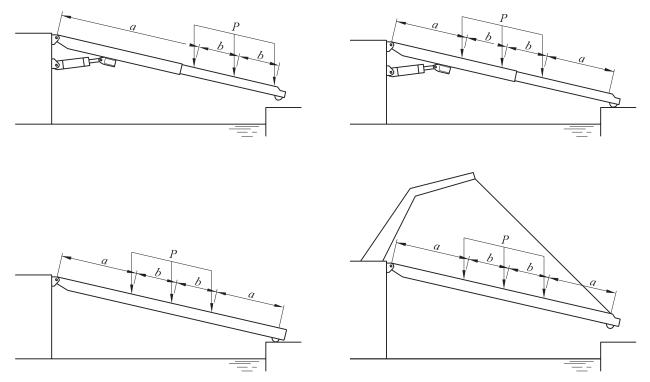
The following loads are defined as main loads (see Figure 1):

- P<sub>S</sub>: weight (N) of lifting appliance structure;
- PF: weight (N) of fittings and mechanical parts permanently connected to the lifting appliance;

- *P*<sub>L</sub>: service load (N) (maximum weight to be lifted);
- *P*<sub>M</sub>: weight (N) of mobile fittings lifted together with service load.




#### Figure 1 — Main loads


The service load (*P*<sub>L</sub>) shall be declared by the manufacturer, marked on the lifting appliance and listed in the user's manual. (standards.iteh.ai)

For access gangways, the service load (type and value) for which the appliance is designed shall be clearly declared and marked on the gangway, and shall be listed in the user's manual. For example the access gangway load can be defined as a uniformly distributed load (p in Figure 2) or as a number of concentrated loads *P* (people accessing the yacht) for which the following data shall be defined (Figure 3):

- number of loads;
- amount of each load;
- position of loads along the access gangway.



2747b02ff9c3/iso-11209-2012



#### Key

- **iTeh STANDARD PREVIEW** concentrated loads Р
- distance from the load to the end of the gangway distance between the concentrated loads not ards.iteh.ai) а
- b

# https://standards.iteh.avcatalog/standard/sist/0622d3b1-0d1c-4fea-bd0b-

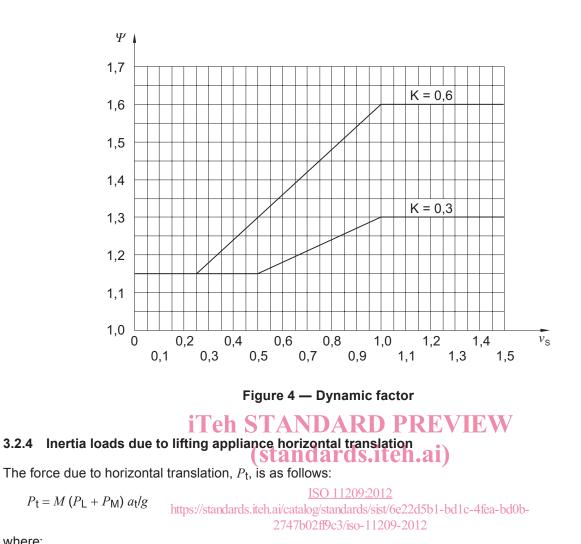
2747b02ff9c3/iso-11209-2012

For gangways that can be used either hanging free above the quay or with the end supported by the quay, the maximum load to be marked is that resulting from the worst loading condition.

When the access gangway can also be used as a crane, the structural check shall be carried out for the two separate loading cases.

#### 3.2.3 Inertia loads due to lifted load vertical movement

To take into account the inertia force due to lifted load vertical movement, the loads PL and PM shall be multiplied by the dynamic factor  $\psi$  given by:

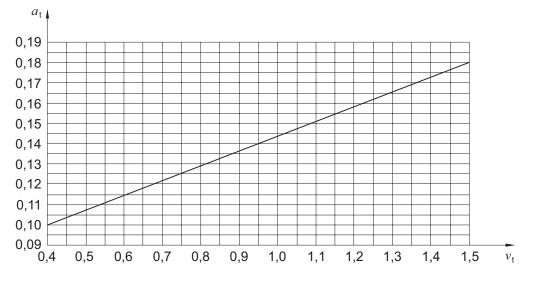

$$\psi = 1 + K v_S$$

(1)

where:

- Κ is the coefficient = 0,3 (jib type crane), 0,6 (gantry crane);
- is the load lifting velocity (m/s), to be taken as no more than 1. vs

Factor  $\psi$ , to be taken as not less than 1,15, is given in Figure 4.




(2)

where:

- is the translating acceleration  $(m/s^2)$ ; at
- is gravity acceleration (9,81 m/s<sup>2</sup>). g

If acceleration  $a_t$  is not specified, it can be obtained from Figure 5 as a function of translating speed  $v_t$ .





#### 3.2.5 Inertia loads due to lifting appliance slewing

The force due to slewing,  $P_{\rm f}$ , is as follows:

$$P_{\rm f} = M \left( P_{\rm L} + P_{\rm M} \right) a_{\rm f}/g$$

where  $a_r$  is the slewing acceleration (m/s<sup>2</sup>).

If acceleration  $a_r$  is not specified, it can be assumed to be 0,6 (m/s<sup>2</sup>) at the jib head at maximum outreach.

#### 3.2.6 Loads due to yacht trim and list

Unless higher values are specified, all the combinations of the following angles shall be considered, according to the location on board and the degree of freedom of the lifting appliance:

List  $-5^{\circ}$   $0^{\circ}$   $+5^{\circ}$ 

Longitudinal trim  $-2^{\circ}$   $0^{\circ}$   $+2^{\circ}$ 

as in the following examples, where (see Figure 6):

- $\theta$  is the transversal angle of the lifting appliance arm;
- $\beta$  is the longitudinal angle of the lifting appliance arm.

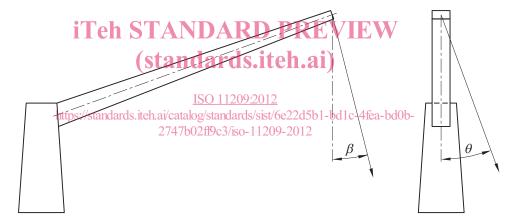



Figure 6 — Lifting appliance angles

(3)