

Designation: D 3350 - 06

# Standard Specification for Polyethylene Plastics Pipe and Fittings Materials<sup>1</sup>

This standard is issued under the fixed designation D 3350; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon ( $\epsilon$ ) indicates an editorial change since the last revision or reapproval.

# 1. Scope\*

- 1.1 This specification covers the identification of polyethylene plastic pipe and fittings materials in accordance with a cell classification system. It is not the function of this specification to provide specific engineering data for design purposes, to specify manufacturing tolerances, or to determine suitability for use for a specific application.
- 1.2 Polyethylene plastic materials, being thermoplastic, are reprocessable and recyclable (Note 2). This specification allows for the use of those polyethylene materials, provided that all specific requirements of this specification are met.

Note 1—The notes in this specification are for information only and shall not be considered part of this specification.

Note 2—See Guide D 5033 for information and definitions related to recycled plastics.

- 1.3 The values stated in SI units are to be regarded as standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Note 3—There is no similar or equivalent ISO standard.

1.5 For information regarding molding and extrusion materials see Specification D 4976. For information regarding wire and cable materials see Specification D 1248.

### 2. Referenced Documents

- 2.1 ASTM Standards: <sup>2</sup>
- D 618 Practice for Conditioning Plastics for Testing
- D 638 Test Method for Tensile Properties of Plastics
- <sup>1</sup> This specification is under the jurisdiction of ASTM Committee D20 on Plastics and is the direct responsibility of Subcommittee D20.15 on Thermoplastic Materials.
- Current edition approved Nov. 15, 2006. Published November 2006. Originally approved in 1974. Last previous edition approved in 2005 as D 3350 05.
- <sup>2</sup> For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

- D 746 Test Method for Brittleness Temperature of Plastics and Elastomers by Impact
- D 790 Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials
- D 792 Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement
- D 883 Terminology Relating to Plastics
- D 1238 Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer
- D 1248 Specification for Polyethylene Plastics Extrusion Materials for Wire and Cable
- D 1505 Test Method for Density of Plastics by the Density-Gradient Technique
- D 1603 Test Method for Carbon Black Content in Olefin Plastics
- D 1693 Test Method for Environmental Stress-Cracking of Ethylene Plastics
- D 1898 Practice for Sampling of Plastics<sup>3</sup>
- D 2837 Test Method for Obtaining Hydrostatic Design Basis for Thermoplastic Pipe Materials or Pressure Design Basis for Thermoplastic Pipe Products
- D 2839 Practice for Use of a Melt Index Strand for Determining Density of Polyethylene
- D 3892 Practice for Packaging/Packing of Plastics
- D 4218 Test Method for Determination of Carbon Black Content in Polyethylene Compounds By the Muffle-Furnace Technique
- D 4703 Practice for Compression Molding Thermoplastic Materials into Test Specimens, Plaques, or Sheets
- D 4883 Test Method for Density of Polyethylene by the Ultrasound Technique
- D 4976 Specification for Polyethylene Plastics Molding and Extrusion Materials
- D 5033 Guide for Development of ASTM Standards Relating to Recycling and Use of Recycled Plastics<sup>3</sup>
- F 1473 Test Method for Notch Tensile Test to Measure the Resistance to Slow Crack Growth of Polyethylene Pipes and Resins
- 2.2 ISO Standard:

<sup>3</sup> Withdrawn.

ISO 12162 Thermoplastic Materials for Pipes and Fittings for Pressure Applications—Classification and Designation—Overall Service (Design) Coefficient

### 3. Terminology

- 3.1 *Definitions*—Terms as described in Terminology D 883 shall apply in this specification.
- 3.1.1 *polyethylene plastics*—as defined by this specification, plastics or resins prepared by the polymerization of no less than 85 % ethylene and no less than 95 % of total olefins with additional compounding ingredients.
  - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 *materials*—polyethylene (PE) resins with the added compounding ingredients.
- 3.2.2 *PE compounds*—has the same meaning as PE plastics materials, compounds, and plastics.
- 3.3 Historical usage and user group conventions have resulted in inconsistent terminology used to categorize and describe polyethylene resins and compounds. The following terminology is in use in ASTM specifications pertaining to polyethylene:
  - 3.3.1 *Specification D 1248*:
- 3.3.1.1 Type (0, I, II, III, IV) = density ranges (same, respectively, as Class in Specification D 4976).
  - 3.3.1.2 Class (A, B, C, D) = composition and use.
- 3.3.1.3 Category (1, 2, 3, 4, 5) = melt index ranges (same as Grade in Specification D 4976).

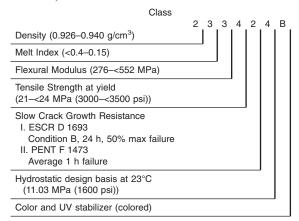
- 3.3.1.4 Grade (E, J, D, or W followed by one or two digits) = specific requirements from tables.
  - 3.3.2 Specification D 3350:
- 3.3.2.1 Type (I, II, III) = density ranges (same as Types I, II, and III in Specification D 1248 and Classes 1, 2, and 3 in Specification D 4976).
- 3.3.2.2 Class = a line callout system consisting of "PE" followed by six cell numbers from Table 1 plus a letter (A, B, C, D, E) denoting color and UV stabilizer.
- 3.3.2.3 Grade = simplified line callout system using "PE" followed by density and slow crack growth cell numbers from Table 1.
  - 3.3.3 Specification D 4976:
  - 3.3.3.1 Group (1, 2) = branched or linear polyethylene.
- 3.3.3.2 Class (0, 1, 2, 3, 4) = density ranges (same, respectively, as Type in Specification D 1248).
- 3.3.3.3 Grade (1, 2, 3, 4, 5) = melt index ranges (same as Category in Specification D 1248).

#### 4. Classification

4.1 Polyethylene plastic pipe and fittings compounds are classified in accordance with density, melt index, flexural modulus, tensile strength at yield, slow crack growth resistance, and hydrostatic strength classification in Table 1.

Note 4—It has been a long-standing practice to use the following terms in describing polyethylene plastics:

TABLE 1 Primary Properties—Cell Classification Limits


| Property                                                                                       | Test Method | 0                       | 1                         | 2                                      | 3                                     | 4                                      | 5                                         | 6                   | 7                | 8                |
|------------------------------------------------------------------------------------------------|-------------|-------------------------|---------------------------|----------------------------------------|---------------------------------------|----------------------------------------|-------------------------------------------|---------------------|------------------|------------------|
| 1. Density, g/cm <sup>3</sup>                                                                  | D 1505      | Unspecified             | 0.925 or<br>lower         | >0.925-<br>0.940                       | >0.940-<br>0.947<br>50-06             | >0.947-<br>0.955                       | >0.955                                    |                     | Specify<br>Value |                  |
| 2. Melt index //standard                                                                       | D 1238      | Unspecified             | ard \$\frac{1.0}{5.151/5} | 0.4 5 c                                | <0.4 to<br>0.15                       | a30 <sup>&lt;0.15</sup> 3-             | fefec07ad                                 |                     | Specify<br>Value |                  |
| 3. Flexural<br>modulus, MPa [psi]                                                              | D 790       | Unspecified             | <138<br>[<20 000]         | 138-<br><276<br>[20 000 to<br><40 000] | 276-<br><552<br>[40 000 to<br>80 000] | 552-<br><758<br>[80 000 to<br>110 000] | 758-<br><1103<br>[110 000 to<br><160 000] | >1103<br>[>160 000] | Specify<br>Value |                  |
| 4. Tensile strength at yield, MPa [psi]                                                        | D 638       | Unspecified             | <15<br>[<2200]            | 15-<18<br>[2200-<br><2600]             | 18-<21<br>[2600-<br><3000]            | 21-<24<br>[3000-<br><3500]             | 24-<28<br>[3500-<br><4000]                | >28<br>[>4000]      | Specify<br>Value |                  |
| 5. Slow Crack Growth Resistance I. ESCR a. Test condition (100% Igepal.)                       | D 1693      | Unspecified             | Α                         | В                                      | С                                     | С                                      |                                           |                     |                  | Specify<br>Value |
| b. Test duration, h c. Failure, max, % II. PENT (hours)                                        | F 1473      | Unspecified             | 48<br>50                  | 24<br>50                               | 192<br>20                             | 600<br>20                              |                                           |                     |                  |                  |
| Molded plaque,<br>80°C, 2.4 MPa<br>Notch depth,<br>F 1473, Table 1                             | 1 1470      | Unspecified Unspecified |                           |                                        |                                       | 10                                     | 30                                        | 100                 | 500              | Specify<br>Value |
| 6. Hydrostatic Strength<br>Classification<br>I. Hydrostatic design<br>basis, MPa [psi], (23°C) | D 2837      | NPR <sup>B</sup>        | 5.52<br>[800]             | 6.89<br>[1000]                         | 8.62<br>[1250]                        | 11.03<br>[1600]                        |                                           |                     |                  |                  |
| II. Minimum required strength, MPa [psi], (20°C)                                               | ISO 12162   |                         |                           |                                        |                                       |                                        | 8<br>[1160]                               | 10<br>[1450]        |                  |                  |

<sup>&</sup>lt;sup>A</sup> Refer to 10.1.4.1.

<sup>&</sup>lt;sup>B</sup> NPR = Not Pressure Rated.

Type I (0.910 to 0.925) = Low Density
Type II (0.926 to 0.940) = Medium Density
Type III (0.941 to 0.965) = High Density

Note 5—The manner in which materials are identified in the cell classification is illustrated for Class PE233424B as follows (refer also to Table 1 and 6.2):



4.2 Materials used in polyethylene plastic pipe and fittings shall use a cell-type format for the identification, close characterization, and specification of material properties. The information from the format is to be used alone or in combination.

Note 6—This type format, however, is subject to possible misapplication since unobtainable property combinations can be selected if the user is not familiar with commercially available materials. The manufacturer should be consulted. Additionally, the appropriate ASTM standard specification should be reviewed to assure materials utilized will meet all the material and piping requirements as specified in the standard.

4.3 Grade—A code for polyethylene pipe and fittings materials that consists of the two letter abbreviation for polyethylene (PE) followed by two numbers that designate the density cell (Property 1) and the slow crack growth resistance cell (Property 5), as defined by either Test Method F 1473 or Test Method D 1693, of the thermoplastic, as specified in Table 1. For the requirements of Property 5 (slow crack growth resistance), consult the materials section of the appropriate ASTM standard specification for the end-use application.

Note 7—Grade designations were adapted from Specification D 1248 - 84 prior to the removal of pipe material from D 1248 - 84. Former Specification D 1248 - 84 grades for PE pipe materials were P14, P23, P24, P33, and P34. Equivalent Specification D 3350 grade designations for these materials are PE11, PE20, PE23, PE30, and PE33, respectively.

## 5. Materials and Manufacture

- 5.1 The molding and extrusion material shall be polyethylene plastic in the form of powder, granules, or pellets.
- 5.2 The molding and extrusion materials shall be as uniform in composition and size and as free of contamination as is achieved by good manufacturing practice. If necessary, the level of contamination may be agreed upon between the manufacturer and the purchaser.
- 5.3 When specified, the color and translucence of molded or extruded pieces formed, under the conditions specified by the manufacturer of the materials, shall be comparable within

commercial match tolerances to the color and translucence of standard samples supplied in advance by the manufacturer of the material.

### 6. Physical Properties

6.1 Cell Classification—Test values for specimens of the PE material prepared as specified in Section 9 and tested in accordance with Section 10 shall conform to the requirements given in Table 1. A typical property value for a PE material is to be the average value from testing numerous lots or batches and determines the cell number. When, due to manufacturing tolerances and testing bias, individual lot or batch values fall into the adjoining cell, the individual value shall not be considered acceptable unless the user, or both the user and the producer, determine that the individual lot or batch is suitable for its intended purpose.

6.2 Color and Ultraviolet (UV) Stabilizer—The color and UV stabilization shall be indicated at the end of the cell classification by means of a letter designation in accordance with the following code:

| Code Letter | Color and UV Stabilizer             |
|-------------|-------------------------------------|
| Α           | Natural                             |
| В           | Colored                             |
| С           | Black with 2 % minimum carbon black |
| D           | Natural with UV stabilizer          |
| 12 E O S    | Colored with UV stabilizer          |

- 6.3 Thermal Stability—The PE material shall contain sufficient antioxidant so that the minimum induction temperature shall be 220°C when tested in accordance with 10.1.9.
- 6.4 Brittleness Temperature—The brittleness temperature shall not be warmer than -60°C when tested in accordance with Test Method D 746.
- 6.5 Density—The density used to classify the material shall be the density of the PE base resin (uncolored PE) determined in accordance with 10.1.3. When the average density of any lot or shipment falls within  $\pm 0.002$  g/cm<sup>3</sup> of the nominal value, it shall be considered as conforming to the nominal value and to all classifications based on the nominal value.
- 6.5.1 For black compounds, containing carbon black, determine the density, Dp, and calculate the resin density, Dr, as follows:

$$Dr = Dp - 0.0044C$$

where:

C = weight percent of carbon black.

- 6.5.2 For colored compounds, the nominal density of the base resin shall be provided by the manufacturer, on request.
- 6.6 Tensile Strength at Yield—The tensile strength at yield used to classify the material shall be the tensile strength at yield of the PE resin determined in accordance with 10.1.6. When the average tensile strength at yield of any lot or shipment falls within  $\pm 3.45$  MPa [ $\pm 500$  psi] of the nominal value, it shall be considered as conforming to the nominal value and to all classifications based on the nominal value.
- 6.7 Elongation at Break—As tested in accordance with 10.1.6, all pressure rated materials shall have a minimum extension at break of 500 % as determined by grip separation.