NOTICE: This standard has either been superseded and replaced by a new version or withdrawn. Contact ASTM International (www.astm.org) for the latest information.

AMERICAN SOCIETY FOR TESTING AND MATERIALS 100 Barr Harbor Dr., West Conshohocken, PA 19428 Reprinted from the Annual Book of ASTM Standards. Copyright ASTM

Standard Test Method for Alkalinity in Brackish Water, Seawater, and Brines¹

This standard is issued under the fixed designation D 3875; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers the determination of alkalinity in brackish water, seawater, and brines.

1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

D 1129 Terminology Relating to Water²

D 1193 Specification for Reagent Water²

D 3370 Practices for Sampling Water²

E 200 Practice for Preparation, Standardization, and Storage of Standard and Reagent Solutions for Chemical Analysis³

3. Terminology

3.1 *Definitions*—For definitions of terms used in this test method, refer to Terminology D 1129.

4. Summary of Test Method

4.1 An electrotitrator or pH meter is used to determine the amount of acid necessary to reach pH 8.1 and 4.5, respectively. The pH values approximate the points where the hydroxide and bicarbonate ions are neutralized.

5. Significance and Use

5.1 Alkalinity as carbonate and bicarbonate of saline water is very important in chemical waterflooding or tertiary recovery processes for recovering petroleum. Alkaline waters offer better wetting to the formation rock and improve oil release. As an additional benefit, ions that provide alkalinity adsorb on rock surfaces occupying adsorption sites and decrease the loss of recovery chemical by adsorption. Determination of alkalinity in waters used in tertiary recovery processes is therefore very important. 5.2 An alkalinity value is necessary in the calculation of carbonate scaling tendencies of saline waters. It is also necessary to determine the alkalinity if the ionic balance of a water analysis is to be used as a check of the reliability of the analysis.

6. Interferences

6.1 Anions other than bicarbonate, carbonate, or hydroxide ions that form weakly dissociated acids that participate in hydrolysis reactions may also contribute to the alkalinity as may some organic materials. The user of this test method on determining the alkalinity is cautioned that all the effects of the anions entering into hydrolysis reactions are combined and reported as an equivalent amount of a single substance or two postulated ions. Included in the reported value is the alkalinity resulting from the presence of borate, silicate, sulfide, and phosphate. The effect of borate on the alkalinity value is considered negligible for waters with pH values of 7 or less.

7. Apparatus

7.1 *Electrotitrator or Standard pH Meter* with suitable electrodes. Maintenance and standardization of electrodes and pH meter should follow manufacturer's instructions because performance can be affected by improper treatment.

7.2 Buret, 10-mL micro. 76049898/350043875-97

8. Reagents

8.1 *Purity of Reagents*—Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society,⁴ where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

8.2 *Purity of Water*—Unless otherwise indicated, reference to water shall be understood to mean reagent water conforming to Specification D 1193, Type I. Other reagent water types may be used provided it is first ascertained that the water is of

¹ This test method is under the jurisdiction of ASTM Committee D-19 on Water and is the direct responsibility of Subcommittee D19.05 on Inorganic Constituents in Water.

Current edition approved Dec. 10, 1997. Published December 1998. Originally published as D 3875 - 80. Last previous edition D $3875 - 80 (93)^{\epsilon_1}$.

² Annual Book of ASTM Standards, Vol 11.01.

³ Annual Book of ASTM Standards, Vol 15.05.

⁴ Reagent Chemicals, American Chemical Society Specifications, American Chemical Society, Washington, DC. For suggestions on the testing of reagents not listed by the American Chemical Society, see Analar Standards for Laboratory Chemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeia and National Formulary, U.S. Pharmaceutical Convention, Inc. (USPC), Rockville, MD.