°
w SLOVENSKI STANDARD

SIST ES 203 790 V1.1.1:2019
01-april-2019

Metode za preskusanje in specificiranje (MTS) - 3. razli¢ica zapisa preskusanja in
krmilnih preskusov - RazsSiritev nabora jezikov TTCN-3: Objektno orientirane
funkcije

Methods for Testing and Specification (MTS) - The Testing and Test Control Notation
version 3 - TTCN-3 Language Extensions: Object-Oriented Features

Ta slovenski standard je istoveten,z: ETSIES 203790 V1.1.1 (2019-01)

ICS:

35.060 Jeziki, ki se uporabljajo v Languages used in
informacijski tehniki in information technology
tehnologiji

SIST ES 203 790 V1.1.1:2019 en

2003-01.Slovenski institut za standardizacijo. RazmnoZevanje celote ali delov tega standarda ni dovoljeno.

SIST ES 203 790 V1.1.1:2019

iTeh STANDARD PREVIEW
(standards.iteh.ai)

SIST ES 203 790 V1.1.1:2019
https/standards.iteh.ai/catalog/standards/sist/06d283de-5321-41ad-9636-
6aefb2241064/sist-es-203-790-v1-1-1-2019

ETSIES 203 790 vi.1.1 2019-01)

Methods for TestinE and ?ﬁecification (MTS);

The Testing and' Test Notation'version 3;
TTCN-3 Language Extensions:©bject-Oriented Features
SIST ES 203 790 V1.1.1:2019

https7//standards.iteh.ai/catalog/standards/sist/06d283de-5321-41ad-9636-
6aefb2241064/sist-es-203-790-v1-1-1-2019

2 ETSI ES 203 790 V1.1.1 (2019-01)

Reference
DES/MTS-203790-00F_ed111

Keywords
language, TTCN-3

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 493 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Saus-Rréfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal.etsi.orq/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2019.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ |ogo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

ETSI

3 ETSI ES 203 790 V1.1.1 (2019-01)

Contents

Intellectual Property RIGNES.... ..ottt b e b e s 5
0 L= Y1V (o SRS 5
MoOdal VErDS TEMINOIOGYccveieeiieceeie sttt sttt e e s re s be e b e sbeeaeesbesreentesaeenseseesneenseseeeseensesseas 5
1 o0 0L S 6
2 L= £ 101 S 6
21 NOIMBLIVE FEFEIENCES ...ttt s s e sttt et e et e e ae e e be e be e beeatesaeesheesaeesaeeseenseeaseensesseesteeteentenn 6
22 INfOIMALIVE FEFEIEINCES..... ..ottt ettt e e ettt e et e st e e be e beeabesasesaeesaeesaeeseenbeeaseeasesreesteeteentens 6
3 Definition of terms and abbreViations.............ccceiiieeie it 7
31 LIS 0PTSRS 7
3.2 ADDIEVIBLIONS ...ttt et b bt a et e s b e sh e e b e e Rt e he e s e e ee e be SR e eb e eae e R s e e e R e bt sheebeeneeneennen 7
4 Package conformance and COMPELTDIHTTYcuiiiireiirereee e 7
5 Package Concepts for the COre LanQUEE.cveuereriirerieieeeeee ettt sn e 8
5.0 GENEIAl ...ttt e et e et et e et eeaeeehe e beete e teehteaheeaheeateebeeteeaeeaaeebeeteeaeeeaeeateeteeteenreenrenaeeaaes 8
51 ClaSSES ANA OB ECES. ...ttt etttk sttt ettt ettt b et b b e eb e sb et e bt s b e e eb e e b e e e bt s b e e eb e sh et eb e se et ebesbeneebeseennerens 8
510 GBINENEL ...ttt h b h b e R R R Rt R e e e R e R e R e R e Re b £ e Rt e n e e R e R e be Rt ehe et ennenes 8
511 ClBSSES ...ttt bbb h e e h AR R e R e e £ R Rt AR SR £ R £ e R e e A £ R e R e Rt eh e e ae e R e e R e R e benaeehe e e ennenes 8
51.1.0 LC T g1 - PP S 8
51.1.1 o0 0= 1 S PS 9
5112 Abstract classes. ., B b R T e A B b T e e L T et e 10
5113 EXEErNEl ClaSSES. . e e T e ettt 10
5114 FiNal ClaSSESc.veeveee il dh s eneme vl srmesmessl arne s ot s e Bemseear e B seesveessesnsesnsesaessseesseesseensesnsesssesssessesssesssns 10
5115 (070] 91511001 (0] £ T Syt sttt SRS 11
51.1.6 DTS {1 (o o PSSR 11
5117 Methods........coveeveeneeeeeeeinhn LS 2 L0 L L L, 11
51.1.8 Method invecation:ids. el avcatalogsiandards/sis 00020 0e: 00 LAl ad Q03 0n e, 12
5119 Visibilityccoovvvenn f0acl 241 64/5i8t205:203:790=V12 1212201 Qe 12
5.1.1.10 BUITT-TN ClBSSES ...ttt b bbbt e e b e s b bt sh e eb e e bt e s e e e et e s besheebe e e ennenneas 12
512 (@ 0] ox £ SO PSPPSN 13
5120 LC T o1 - TSRS 13
5121 L@ 1LY £ 0T o S 13
51.2.2 (O o1 o = 1= = 0= S 13
51.2.3 U FEFEIENCE. ...ttt et et e e e aee s be e s be e sbeesbeeabeeaeeeaeeaseebeenteentesntesaeesreesanas 13
51.24 SEIECE ClaSS-SEAEMENT........ccuiiciiecteeeee et ettt e et e ebe e sbeesbe e besatesaeesaeesbeenbeentesnsesaeesseesanas 13
5125 Of -operator (Dynamic Class DiSCrimiNation)c.ereerereererieeeiesieesiesseseee e sseseseeesees 14
51.2.6 L0721 1] o OSSP PTRPTPRR 14
52 EXCEPEION NANAIING. ...ttt b bbb b e st b st b e bt e e ns 14
5.2.0 GENEN@l.. ..ttt ettt et e et e st e et e et e saeesheeehe e bt eateeateehee ke e be e beetesaeeeheeaaeebeereenaeeteeaheeateeareereanreaans 14
521 Extensionto ETSI ES 201 873-1, clause 16.1.0 (FUNCLIONS)cceecueeierieiie e see e 14
5.2.2 Extensionto ETSI ES 201 873-1, clause 16.1.3 (External FUNCLIONS)ccccveevveienieniieseeeee e 15
523 Extensionto ETSI ES 201 873-1, clause 16.1.4 (Invoking functions from specific places)..........cccceeu..... 15
524 Extension to ETS| ES 201 873-1, clause 16.2 (AISLEDS)......cveerieirerieisie e 15
525 Extension to ETS| ES 201 873-1, Clause 16.3 (TESL CASES) ...veveveriereeerierieesiesieesiesieeste e sessestesesseseeseenens 16
5.2.6 Extensionto ETSI ES 201 873-1, clause 18 (Overview of program statements and operations) 16
527 Extension to ETS| ES 201 873-1, clause 19 (Basic program Statements)ccceeeeereeereneeeneneeeseeseenenns 18
6 TRI EXtensionS for the PaCKagEcooviiuiiie ettt st s 21
6.1 Extensionsto clause 5.3 of ETSI ES 201 873-5 Datainterface.......cccvveeieierene e 21
6.2 Extensionsto clause 5.6.3 of ETSI ES 201 873-5 Miscellaneous Operationscceeeevereerieeseeseesseeseenns 22
6.3 Extensionsto clause 6 of ETSI ES 201 873-5 Java™ language Mapping........c.ccceeeeveeeeeereeeseeeeeeeeeeeeenenes 24
6.4 Extensionsto clause 7 of ETSI ES 201 873-5 ANSI C language Mapping........ccccoveveeeereeseeseesesseeeseeseesnns 25
6.5 Extensionsto clause 8 of ETS| ES 201 873-5 C++ language MapPing.......c.ccceeveereerreereeeeeseeseesieessessessessnes 26
6.6 Extensionsto clause 9 of ETSI ES 201 873-5 C# language MapPiNgcccueieereerreerieeeeseeseeseessesssesssesessens 27
7 TCl EXtensionS fOr the PaCKagEccovieieece ettt sne e 28

ETSI

4 ETSI ES 203 790 V1.1.1 (2019-01)

7.1 Extensionsto clause 7.2.2.1 of ETSI ES 201 873-6 Abstract TTCN-3 datatypesand values............c.cccueunee. 28
7.2 Extensionsto clause 7.2.2 of ETSI ES 201 873-6 Abstract TTCN-3 datatypes and values..............ccoerueuenee. 28
7.3 Extensionsto clause 7.2.2.2.0 of ETSI ES 201 873-6 BaSIC FUIESceeueiiirierie e 30
74 Extensionsto clause 7.2.2.2 of ETSI ES 201 873-6 Abstract TTCN-3 VAlUES........ccoooeverierenereneseeeeeeeees 30
75 Extensionsto clause 7.3.4.1 of ETSI ES 201 873-6 Abstract TCI-TL provided.........c.ccceovineininecneneenne 31
76 Extensionsto clause 8 of ETSI ES 201 873-6 Java™ language Mapping..........ccceeeevereeeeereeeseeeeseeeseeeenenns 33
1.7 Extensionsto clause 9 of ETSI ES 201 873-6 ANSI C language MapPing........cccecuvevereereeseeseenesseeseeseesnns 35
7.8 Extensionsto clause 10 of ETSI ES 201 873-6 C++ language MappinNg.........cceceverreerreeeeseeseeseeseeseessessseenes 37
7.9 Extensionsto clause 11 of ETSI ES 201 873-6 W3C XML MapPPiNg......cccovereereerireireeieseeseeseessessseeseeseesnns 39
7.10 Extensionsto clause 12 of ETSI ES 201 873-6 C# language MapPing.......c.ccccceveerreerreeeeseeseesieeseessessessessens 40
8 XTRI Extensions for the Package (OPLtioNal)..........couieiiriiereeieeeesesese e 42
8.1 Changesto clause 5.6.3 of ETS| ES 201 873-5 Miscel|laneous Operations............ccoceerereeenereeiesieseeneseeseenenns 42
8.2 Extensionsto clause 6 of ETSI ES 201 873-5 Java™ language Mapping.........c.coeeeeeeeeeeereenesesesssesssssssnssesenens 44
8.3 Extensionsto clause 7 of ETSI ES 201 873-5 ANSI C language Mapping.........coeeeeereereeerreneeereseeesesseneenes 44
84 Extensionsto clause 8 of ETSI ES 201 873-5 C++ language MapPing.......c.ccceeieereerreereeseeseeseesesssessessessens 45
8.5 Extensionsto clause 9 of ETSI ES 201 873-5 C# language MapPiNgcccueieereerreerreeseeseeseeseesseessesssssessnes 45
Annex A (normative): BNF and static SEMantiCS........cccceecieiiiiesiecee e 46
A.l Extensionsto TTCN-3LEIMUNGIS......ccciiiiiiiieieieieinesie ettt sttt se e 46
A.2 Modified TTCN-3 syntax BNF produCTiONS..........cceoiiierirrieiiesrseese st seesie e see st ee e seeesee e sseeseesneens 47
A.3 Additional TTCN-3 syntax BNF pProduCiONS..........ccceiieiiieiieie ettt s 48
[1S 0] Y PSSP 49

ETSI

5 ETSI ES 203 790 V1.1.1 (2019-01)

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential |PRs, if any, ispublicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

ThisETSI Standard (ES) has been produced by,ET.SIyTiechnicaliCommittee Methods for; Testing and Specification
(MTS).

The present document relates to the multi-part standard'ETSHES 201 873Covering the Testing and Test Control
Notation version 3, asidentified in ETSI ES 201 873-1 [1].

Modal verbs terminology

In the present document “shall”, "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

ETSI

6 ETSI ES 203 790 V1.1.1 (2019-01)

1 Scope

The present document defines the support for object-oriented featuresin TTCN-3. TTCN-3 can be used for the
specification of all types of reactive system tests over a variety of communication ports. Typical areas of application are
protocol testing (including mobile and Internet protocols), service testing (including supplementary services), module
testing, testing of OMG CORBA based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can
be used for many other kinds of testing including interoperability, robustness, regression, system and integration testing.
The specification of test suites for physical layer protocols is outside the scope of the present document.

TTCN-3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as conceptsin the
TTCN-3 core language, but which are optional as part of a package which is suited for dedicated applications and/or
usages of TTCN-3.

While the design of TTCN-3 package has taken into account the consistency of a combined usage of the core language
with a number of packages, the concrete usages of and guidelines for this package in combination with other packages
is outside the scope of the present document.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references,only the cited version applies. For non-specific references, the latest version of the
referenced document (includingany @amendments) applies.

Referenced documents which are not found:to bepublicly-avail ablein the'expected location might be found at
https.//docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in-thisclausewere valid-at the time of publication, ETSI cannot guarantee
their long termvalidity!

The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language”.

2] ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics'.

[3] ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[4] ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references,only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

ETSI

7 ETSI ES 203 790 V1.1.1 (2019-01)
[i.2] ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[i.3] ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Using XML schemawith TTCN-3".

[i.4] ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".

3 Definition of terms and abbreviations

3.1 Terms

For the purposes of the present document, the terms given in ETSI ES 201 873-1 [1], ETSI ES 201 873-4 [2],
ETSI ES 201 873-5[3] and ETSI ES 201 873-6 [4] apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in ETSI ES 201 873-1[1], ETS| ES 201 873-4 [2],
ETSI ES 201 873-5[3] and ETSI ES 201 873-6 [4] apply.

4 Packageiconformance and compatibility

The package presented in the present document)i sidentified by the package tag:
"TTCN- 3: 2018 oj ect-Oiented features" -tobeused with modules complying with the present document.

For an implementation claiming:to.conformto/this package version) @l features specifiedinthe present document shall
be implemented consistently with the requitements.given-in‘the present document and in ETSI ES 201 873-1 [1] and
ETSI ES 201 873-4[2].

The package presented in the present document is compatible to:

° ETSI ES201 873-1[1], version 4.10.1;

ETSI ES201 873-4 [2], version 4.6.1;
e ETSIES201873-5[3], version 4.8.1;
° ETSI ES201 873-6 [4], version 4.9.1;
e ETSIES201873-7[i.1];

e ETSIES201873-8[i.2);

e ETSIES201873-9[i.3];

e ETSIES201873-10[i.4].

If later versions of those parts are available and should be used instead, the compatibility to the package presented in the
present document has to be checked individually.

ETSI

8 ETSI ES 203 790 V1.1.1 (2019-01)

5 Package Concepts for the Core Language

5.0 General

This package defines objec-oriented features for TTCN-3, i.e. it extends the TTCN-3 core language (ETSI
ES 201 873-1 [1]) with well-known concepts from object-oriented programming and modelling languages. This
package realizes the following concepts:

. classes (i.e. class definition, scope rules, abstract and external classes, refinement, constructors, destructors,
methods, visibility, and built-in classes);

. objects (i.e. ownership, object references, select class-statement, dynamic class discrimitation, and casting);
and

. exception handling (i.e. ability to define exception handling for functions, external functions, atsteps, and test
cases).

5.1 Classes and Objects

51.0 General

This clause introduces the concepts of class types and their values, called objects as well as the operations allowed to be
applied to these objects.

51.1 Classes

5.1.1.0 General

Syntactical Structure

[public | private]

type [external] class [@inal | @bstract]
Identifier [extends Identifier]
[runsOnSpec] [systenSpec] [ntcSpec]

“{" {d assMenber} "}"

[finally StatenentBl ock]

Semantic Description

A classis atype where the values are called objects. A class can declare fields (variables, constants, templates, ports,
timers) and methods as its members. Each member name inside the class shall be unique, there is no overloading. The
private and protected fields and methods are only accessible by the methods of the class, while the public members of
the class can be accessed also from behaviour not defined in the class. The private members of the class can be accessed
directly only by members of the classitself. All members which are neither private nor public are protected and can also
be accessed by members of subclasses.

A class can extend another class. The extended classis called the superclass, while the extending classis called the
subclass. The resulting type of a class definition is the set of object instances of the classitself and all instances of its
direct or indirect subclasses. A subclassis a subtype of its direct and indirect superclasses and its object instances are
type compatible with them. If a class does not explicitly extend another class type, it implicitly extends the root class
type object. Thus, al classes are directly or indirectly extensions of the object class.

A class can have optional runs on, mtc and system clauses. This restricts the type of component context that can create
objects of that class and all methods of this class. If a class does not have one of these clauses, it inheritsit from its
superclass, if the superclass has one. If the superclass has or inherits a runs on, mtc or system clause, the subclass may
declare each of these clauses with a more specific component type than the one inherited. The function members of
classes shall not have runs on, system or mtc classes but inherit them from their surrounding class or its superclasses.

ETSI

9 ETSI ES 203 790 V1.1.1 (2019-01)

Restrictions
a) Templates are not allowed for classtypes.

b) Passing of object references to the create operation of a component type or afunction started on another
component is not allowed.

¢) No subtyping definition is allowed for class types viathe normal subtype definition.

d) Nolocal/globa constants or module parameters of class type or containing class type fields or elements are
allowed.

e) Classtype cannot be the contained value of an anytype value.

f) Thefunctions of aclass shall not have a runs on, mtc or system clause.

g) Therunson type of aclass shall be runs on compatible with the runs on type of the behaviour creating a class.
h) The runson type of aclass shall be runs on compatible with the runs on type of the superclass.

i) The mtc and system type of a class shall be mtc and system compatible with the mtc and system types of the
superclass, respectively.

51.1.1 Scope rules

Class constitutes a scope unit. For the uniqueness of identifiers, the rules specified in the clause 5.2.2 of ETS|
ES 201 873-1 [1] apply with the following exceptions:

a) ldentifiers from the higher Scope can be retised for imember declarations. A, réference to areused identifier
without a prefix occurring inside a class scope shall be resolved as a reference to the class member. In order to
refer to the declaration on the higher-scope;-the identifierishall, bepreceded with a module name and adot (".").

b) Identifiers of member declarations can be reused inside methods for formal parameter and local declarations.
A reference to areused identifier without aprefix occurring inside a class method shall be resolved as a
reference to the farmal -parameter-or:local \declaration. In orderto refer'to the member declaration, the
identifier shall be preceded withthe thi)s/keyword and-adot.

¢) Reusingidentifiers of members of the component type specified in the runs on clause of the class for members
and inside methods for formal parameters and local declarationsis not allowed.

EXAMPLE:

modul e C assMWbdul e {
const integer a := 1;

type class MO ass() {
const integer a := 2;
function doSonething (integer a := 3) {
log(a); // logs 3 (for the default val ue)
log(this.a); // logs 2
| og(d assModule.a); // logs 1

function doSonet hi ngEl se () {
log(a); // logs 2
log(this.a); // also logs 2
| og(C assMbdul e.a); // logs 1

ETSI

10 ETSI ES 203 790 V1.1.1 (2019-01)

51.1.2 Abstract classes

A class can be declared as @abstract. In that case, it is allowed that it also declares abstract member functions who shall
be defined by all non-abstract subclasses. An abstract method function has no function body but can be called in al
concrete instances of subclasses of the abstract class declaring it. Other members of the abstract class or its subclasses
may use the abstract functions asif it was concrete where at runtime the concrete overriding definition will be used.

NOTE 1. Abstract classes are only useful as superclasses of concrete classes.
Restrictions
a) Abstract classes cannot be explicitly instantiated.

b) If aclassthat is not declared abstract extends an abstract class, al methods that have no implementation in the
superclass shall be implemented in this class.

NOTE 2: Variables of an abstract class type can only contain references to instances of non-abstract subclasses.

5.1.1.3 External classes

A class may also be declared as external. In that case, all members shall be external functions without a function body.
Itis allowed to omit the external keyword from these function declarations. When instantiating an external class, the
object being created is provided by the platform adapter and the method calls to the object are delegated viathe
platform adapter to the corresponding method of the external object.

NOTE 1. External classes are away to use object-oriented library functionality to TTCN-3 while still remaining
abstract and independent of actual implementation. Libraries for common constructs like stacks,
collections, tablesicanbe definediorautomati ciimport mechanisms could be provided.

If an object of an external classisinstantiated, it implicitly creates.an external, object and the internal object has a
handle to the external one. The reference tothe'external abjectis' called ahandle. When an external method is invoked
on theinternal object, the call is delegated to the handle.

NOTE 2: External objects are possibly shared between different parts of the test system. Therefore, racing
conditions and deadl ocks have to,be avoided by the external, implementation.

Aninternal class can extend an external class and add internal behaviour, but also additional external functions, which
have to be declared external explicitly. Such a classis conceptually still an external class and each instance has a handle
to an external object.

Restrictions
a) External classes shall not contain fields or functions with a body.
b) External classes shall not be derived from non-external classes other than object.

c¢) If aninternal class defines an external function, it shall be derived from an external class either directly or
indirectly.

EXAMPLE:

external type class Stack {
function push(integer v);
function pop() return integer;
function isEnpty() return bool ean;

}

5114 Final Classes

If aclass shall not be subclassed, it may be declared as @ i nal . Final classes cannot be abstract.

ETSI

11 ETSI ES 203 790 V1.1.1 (2019-01)

5115 Constructors

Syntactic Structure

create "(" { Formal Paranmeter , }* ")"
[":" Superdass "(" { Actual Parameter , }+ ")"]
St at ement Bl ock

Semantic Description

A class can define a constructor called cr eat e. If no constructor is defined, a default constructor isimplicitly provided
where the formal parameters of the constructor are the parameters of the (implicit or explicit) constructor of the direct
superclass and one formal in parameter for each declared member field of the classitself in their order of declaration
with equivalent type. The constructor isinvoked on atype reference to the class and the result of thisinvocationisa
new instance object of the constructor's specific class. If aclassis extending another class with an explicit constructor,
that constructor shall be invoked by adding a super-constructor clause with an actual parameter list to the constructor
declaration. An implicit constructor will automatically pass the required actual parameters to the constructor of its
superclass.

In the constructor, it is allowed to refer to the object being constructed ast hi s to reference the fields of the object to
be created in case that the names of the formal parameters clash with the names of those fields. They are explicitly
allowed to have the same names as class members.

EXAMPLE:

type class Md ass {
var integer a;
const float b;
[/ inplicit constructor:
/lcreate(integer a, floatnb), {
/1l this.a := a;
/1 this.b :=b
11}
}
type class Myd ass2 extends Myd ass {
tenpl ate integer ty
/1 explicit constructor . .
create(tenplate integer t) : MCass(2) "0.°5){
this.t :=1t;
}

5116 Destructors
Syntactic Structure

finally StatenentBl ock
Semantic Description

A destructor may be provided using afinally declaration following the class body. This destructor will be invoked
automatically at the latest before the system deall ocates an object instance (which istool specific and out of the scope of
the present document) or when the owning component is terminates. The StatementBlock has access to al members
accessible to the class. The StatementBlock is semantically a function body of a function without return clause.

When deallocating the object instance, the destructor of the associated classisinvoked first, followed by the destructor
of all parent classesin the reverse order of superclass hierarchy.

511.7 Methods

A method is afunction defined inside the class body. It has the same properties and restrictions as any normal function,
but it isinvoked in an object which can be referred to by thet hi s object reference. A method invocation can access
the class's own fields and also the inherited protected fields and methods of its superclasses.

ETSI

12 ETSI ES 203 790 V1.1.1 (2019-01)

A method inherited from a superclass can be overridden by the subclass by redefining a function of the same name and
with the same formal parameter list. When a method is called in an object, the version of the most specific class of the
super class hierarchy of the concrete class that defines the method in its body will be invoked. The overridden method
can be invoked from the overriding class by using the keyword super asthe object reference of the invocation. If a
method shall not be overridden by any subclass, it can be declared as @ i nal .

Public methods, if not overridden by the subclass, are inherited from the superclasses. If a public method is declared in
aclass, it can beinvoked also in all objects of itsdirect or indirect subclasses.

If apublic method is overridden, the overriding method shall have the same formal parametersin the same order asthe
overridden method. Public methods shall be overridden only by public methods. Protected methods may be overridden
by public or protected methods.

The return type of an overriding function shall be the same as the return type of the overridden function with the same
template restrictions and modifiers.

Methods shall have nor uns on, syst emor nt ¢ clause directly attached to them. However, they inherit these
clauses from their surrounding class.
5.1.1.8 Method invocation

Syntactical Structure

[ojectlinstance "."] ldentifier "(" FunctionActual ParList ")"
A method invocation is afunction call associated with a certain object defined in the class of that object.

Methods are invoked using the.dotted notation on.an object reference; lnside the scope of a class, methods of the same
class or any visible inherited methods can’be invoked witheut the Objectinstance prefix if the object the method shall be
invoked in isthe same object asthe one invoking it. The usual restrictions on-actual parameters, as well as runs on, mtc
and system types apply a so on method invecations."All“ather restrictions that/apply to called functions also apply to
method invocation.

5.1.1.9 Visibility

Fields can be declared as private or protected. Methods can be declared as private, public or protected. If no visibility is
given then the default modifier protected is assumed.

Private member functions are not visible and can be present in multiple classes of the same hierarchy with different
parameter lists and return values.

Public member functions can be called from any behaviour running on the object's owner component.
Restrictions

a) A field of any visibility cannot be overridden by a subclass.

b) A public member function can only be overridden by another public member function.

c) Private members can only be accessed directly from inside their surrounding class's scope.

5.1.1.10 Built-in classes

The abstract special built-in class called obj ect isthe superclass for al classes that do not explicitly extend another
class.

The pseudo definition of that classis:
type class @bstract @uiltin object {
/1 This function will return a tool-specific descriptive string by default

/1 but can be overridden by subcl asses
public function toString() return universal charstring;

NOTE: The @builtinisonly added for illustrative purposes and not part of the TTCN-3 language.

ETSI

13 ETSI ES 203 790 V1.1.1 (2019-01)

5.1.2 Objects

51.2.0 General

Objects are the instances of classes. Each instance comprises an instance of the data of the fields of the class (including
all superclasses) and allows invocation of its public methods by other behaviour and protected or private methods by
behaviour defined by the object’s class itself.

5.1.2.1 Ownership

Each object is owned by the component on which it was created. The owning component of an object can be referenced
viathesel f component reference. Methods of objects can only be invoked by behaviour that aso runs on the owning
component. An object is created on a component if its constructor was invoked by a behaviour running on that
component.

5.1.2.2 Object References

Objects are always passed by reference (even though their formal parameters can still bein, inout or out, dependent on
the usage of that parameter). A variable of a class type contains only areference to the object instance and the object is
not copied when used as an actual parameter or assigned to avariable, but only the reference to the object. Therefore,
multiple variables can contain a reference to the same object simultaneously.

Restrictions

a) Object References shall not be passed as actual parameter or part of an actual parameter to either the create
operation of a companent type or afunctionstartedsonacomponent. L f /arstructured type contains afield of a
classtype, thistype i's not-seen’as a data type-and'its values cannot be'used for sending and receiving or as an
argument to any expression other than the equality/inequality operator.

NOTE: Since objects cannot be shared by different component contexts and for each component at most one
behaviour is running, no parallel conflicting access to any of the objects fields or methods is possible.

5.1.2.3 Null reference

An object variable that is not initialized with an object instance contains the specia valuenul | . An object variable or
parameter may be compared with the special value nul | with the equality and inequality operators or can be assigned
the special valuenul | explicitly.

5124 Select class-statement

Syntactical Stucture

select class "(" Ohject ")"
"{" { case "(" CassReference ")" StatenentBlock }+ [El seCase] "}"

Semantic Description

The class of an object can be discriminated for via the 'select class' statement that is similar to a select union statement
insofar that it allows only superclasses and known subclasses of the object reference's class in the context. If more than
onhe case contains a superclass of the actual class of the given object instance, the first of these cases will be chosen by
the select class statement.

EXAMPLE:

type class A {}
type class B extends A {}

var Av_a := B.create();

select class (v_a) {
case (B) { ...} // will be chosen
case (A { ...} // will not be chosen

ETSI

	‘ﬁoö>0³–˘��t)4&øÂ⁄P�âlqž(rJ§ÛATû@��6Yë¹Â-ł˜£¸;Ł_OŽÁ]šx¤Ôò9YW˜˛
&5ñ �™Àu¿��ƒLÿ)3W›¦˚1b�ù�~½-¹ìÂ0Œ!fã�ý¸f¯-µŁ�Ñ;⁄‚®ÛÐV

