INTERNATIONAL STANDARD

ISO/IEC 11889-2

First edition 2009-05-15

Information technology — Trusted Platform Module —

Part 2: **Design principles**

Technologies de l'information — Module de plate-forme de confiance —

iTeh STPartie 2: Principes de conceptión EW

(standards.iteh.ai)

ISO/IEC 11889-2:2009 https://standards.iteh.ai/catalog/standards/sist/42379264-ff8d-4494-8a38-74023a1ee853/iso-iec-11889-2-2009

Reference number ISO/IEC 11889-2:2009(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/IEC 11889-2:2009</u> https://standards.iteh.ai/catalog/standards/sist/42379264-ff8d-4494-8a38-74023a1ee853/iso-iec-11889-2-2009

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2009

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Table of Contents

1. Scop	e	1
1.1	Key words	1
1.2	Statement Type	1
2. Norm	native references	2
3. Abbre	eviated Terms	3
4. Confe	ormance	5
4.1	Introduction	5
4.2	Threat	6
4.3	Protection of functions	6
4.4	Protection of information	6
4.5	Side effects	7
4.6	Exceptions and clarifications	7
5. TPM	Architecture	8
5.1	Interoperability	8
5.2	Components	8
5.2.1	Input and Output STANDARD PREVIEW	9
5.2.2	2 Cryptographic Co-Processoclards.iteh.ai)	9
5.2.3		11
5.2.4	HMAC Engine <u>ISO/IEC 11889-2:2009</u> https://standards.iteh.ai/catalog/standards/sist/42379264-ff8d-4494-8a38-	12
5.2.5	Random Number Generatore853/iso-iec-11889-2-2009	13
5.2.6	S SHA-1 Engine	15
5.2.7	Power Detection	16
5.2.8	3 Opt-In	16
5.2.9	Execution Engine	17
5.2.1	0 Non-Volatile Memory	17
5.3	Data Integrity Register (DIR)	18
5.4	Platform Configuration Register (PCR)	18
6. Endo	orsement Key Creation	20
6.1	Controlling Access to PRIVEK	21
6.2	Controlling Access to PUBEK	21
7. Attes	tation Identity Keys	22
8. TPM	Ownership	23
8.1	Platform Ownership and Root of Trust for Storage	23
9. Authe	entication and Authorization Data	24
9.1	Dictionary Attack Considerations	25
10. TPM	Operation	26
10.1	TPM Initialization & Operation State Flow	27
10.1	.1 Initialization	27

10.2	Self-Test Modes	28
10.2.1	Operational Self-Test	29
10.3	Startup	32
10.4	Operational Mode	33
10.4.1	Enabling a TPM	34
10.4.2	Activating a TPM	35
10.4.3	Taking TPM Ownership	36
10.4.4	Transitioning Between Operational States	38
10.5	Clearing the TPM	38
11. Physic	al Presence	40
12. Root o	f Trust for Reporting (RTR)	42
12.1	Platform Identity	42
12.2	RTR to Platform Binding	43
12.3	Platform Identity and Privacy Considerations	43
12.4	Attestation Identity Keys	43
12.4.1	AIK Creation	44
12.4.2	AIK Storage	45
13. Root o	f Trust for Storage (RTS) the STANDARD PREVIEW	46
13.1	Loading and Unloading Blobs (standards.iteh.ai)	46
14. Transp	ort Sessions and Authorization Protocols	47
14.1	Authorization Session Setup https://standards.iteh.ai/catalog/standards/sist/42379264-ff8d-4494-8a38-	48
14.2	Parameter Declarations for OIAP4and OSAP/Examples9-2-2009	50
14.2.1	Object-Independent Authorization Protocol (OIAP)	52
14.2.2	Object-Specific Authorization Protocol (OSAP)	56
14.3	Authorization Session Handles	59
14.4	Authorization-Data Insertion Protocol (ADIP)	60
14.5	AuthData Change Protocol (ADCP)	64
14.6	Asymmetric Authorization Change Protocol (AACP)	65
15. ISO/IE	C 19790 Evaluations	66
15.1	TPM Profile for successful ISO/IEC 19790 evaluation	66
16. Mainte	nance	67
16.1	Field Upgrade	69
17. Proof o	of Locality	70
18. Monote	onic Counter	71
19. Transp	ort Protection	74
19.1	Transport encryption and authorization	75
19.1.1	MGF1 parameters	77
19.1.2	HMAC calculation	78
19.1.3	Transport log creation	78
19.1.4	Additional Encryption Mechanisms	78

19.2	Transport Error Handling	79
19.3	Exclusive Transport Sessions	79
19.4	Transport Audit Handling	80
19.4.	1 Auditing of wrapped commands	80
20. Audit	Commands	81
20.1	Audit Monotonic Counter	83
21. Desig	n Section on Time Stamping	84
21.1	Tick Components	84
21.2	Basic Tick Stamp	85
21.3	Associating a TCV with UTC	85
21.4	Additional Comments and Questions	87
22. Conte	ext Management	89
23. Evicti	on	91
24. Sessi	on pool	92
25. Initiali	zation Operations	93
26. HMA0	C digest rules	94
27. Gene	ric authorization session termination rules	95
28. PCR	Grand Unification Theory	96
28.1	Validate Key for use (standards.iteh.ai)	98
29. Non \	/olatile Storage	100
29.1	NV storage design principles NV storage design principles	101
29.1.	1 NV Storage use model\$3a1ee853/iso-iec-11889-2-2009	101
29.2	Use of NV storage during manufacturing	103
30. Deleg	ation Model	104
30.1	Table Requirements	104
30.2	How this works	105
30.3	Family Table	106
30.4	Delegate Table	107
30.5	Delegation Administration Control	108
30.5.	1 Control in Phase 1	109
30.5.	2 Control in Phase 2	110
30.5.	3 Control in Phase 3	110
30.6	Family Verification	110
30.7	Use of commands for different states of TPM	112
30.8	Delegation Authorization Values	112
30.8.	1 Using the authorization value	112
30.9	DSAP description	113
31. Physi	cal Presence	116
31.1	Use of Physical Presence	116
32. TPM	Internal Asymmetric Encryption	117

32.1.1 TF	PM_ES_RSAESOAEP_SHA1_MGF1	117
32.1.2 TH	PM_ES_RSAESPKCSV15	118
32.1.3 TH	PM_ES_SYM_CTR	118
32.1.4 TF	PM_ES_SYM_OFB	118
32.2 TPM Ir	nternal Digital Signatures	118
32.2.1 TH	PM_SS_RSASSAPKCS1v15_SHA1	119
32.2.2 TH	PM_SS_RSASSAPKCS1v15_DER	119
32.2.3 TH	PM_SS_RSASSAPKCS1v15_INFO	120
32.2.4 Us	se of Signature Schemes	120
33. Key Usage Ta	able	121
34. Direct Anonyr	nous Attestation	123
34.1 TPM_I	DAA_JOIN	123
34.2 TPM_I	DAA_Sign	124
34.3 DAA C	Command summary	125
34.3.1 TF	PM setup	125
34.3.2 JC	NIC	126
34.3.3 SI	GN	129
35. General Purp	ose IO iTeh STANDARD PREVIEW	132
36. Redirection	(standards.iteh.ai)	133
37. Structure Vers		134
38. Certified Migra	ation Key Type https://standards.iteh.ai/catalog/standards/sist/42379264-ff8d-4494-8a38-	135
38.1 Certifie	ed Migration Requirements4023a1ee853/iso-iec-11889-2-2009	135
38.2 Key Ci	reation	136
38.3 Migrat	e CMK to a MA	136
38.4 Migrat	e CMK to a MSA	136
39. Revoke Trust		138
40. Mandatory an	d Optional Functional Blocks	139
41. 1.1a and 1.2 [Differences	142
42. Bibliography		143

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

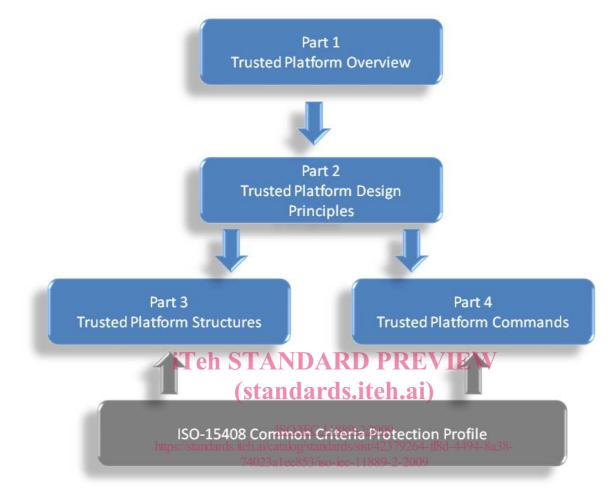
The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 11889-2 was prepared by the Trusted Computing Group (TCG) and was adopted, under the PAS procedure, by Joint Technical Committee ISO/IEC JTC 1, *Information technology*, in parallel with its approval by national bodies of ISO and IEC.

ISO/IEC 11889 consists of the following parts, under the general title *Information technology* – *Trusted Platform Module*: **Teh STANDARD PREVIEW**

— Part 1: Overview


(standards.iteh.ai)

— Part 2: Design principles

- Part 3: Structure^{https://standards.iteh.ai/catalog/standards/sist/42379264-ff8d-4494-8a38-74023a1ee853/iso-iec-11889-2-2009}

— Part 4: Commands

Introduction

Figure 1. TPM Main Specification Roadmap

Start of informative comment

ISO/IEC 11889 is from the Trusted Computing Group (TCG) Trusted Platform Module (TPM) specification 1.2 version 103. The part numbers for ISO/IEC 11889 and the TCG specification do not match. The reason is the inclusion of the Overview document that is not a member of the TCG part numbering. The mapping between the two is as follows:

End of informative comment	
Part 4 Commands	Part 3 Commands
Part 3 Structures	Part 2 Structures
Part 2 Design Principles	Part 1 Design Principles
Part 1 Overview	Not published
ISO Reference	TCG Reference

Information technology — Trusted Platform Module —

Part 2: **Design principles**

1. Scope

ISO/IEC 11889 defines the Trusted Platform Module (TPM), a device that enables trust in computing platforms in general. ISO/IEC 11889 is broken into parts to make the role of each document clear. Any version of the standard requires all parts to be a complete standard.

A TPM designer MUST be aware that for a complete definition of all requirements necessary to build a TPM, the designer MUST use the appropriate platform specific specification to understand all of the TPM requirements.

Part 2 defines the principles of TPM operation. The base operating modes, the algorithms and key choices, along with basic interoperability requirements make up the majority of the normative statements in part 2.

1.1 Key words Teh STANDARD PREVIEW

The key words "MUST," "MUSTANOTAI" REQUIRED 1 SHALL," "SHALL NOT," "SHOULD," "SHOULD NOT," "RECOMMENDED," "MAY," and "OPTIONAL" in this document's normative statements are to be interpreted as described in REC. 2119, Key words for use in RECs to Indicate Requirement Levels to Standards, iteh ai/catalog/standards/sist/42379264-ft8d-4494-8a38-

74023a1ee853/iso-iec-11889-2-2009

1.2 Statement Type

Please note a very important distinction between different sections of text throughout this document. You will encounter two distinctive kinds of text: informative comment and normative statements. Because most of the text in this specification will be of the kind normative statements, the authors have informally defined it as the default and, as such, have specifically called out text of the kind informative comment They have done this by flagging the beginning and end of each informative comment and highlighting its text in gray. This means that unless text is specifically marked as of the kind informative comment, you can consider it of the kind normative statements.

For example:

Start of informative comment

This is the first paragraph of 1-n paragraphs containing text of the kind informative comment ...

This is the second paragraph of text of the kind informative comment ...

This is the nth paragraph of text of the kind informative comment ...

To understand the standard the user must read the standard. (This use of MUST does not require any action).

End of informative comment

This is the first paragraph of one or more paragraphs (and/or sections) containing the text of the kind normative statements ...

To understand the standard the user MUST read the standard. (This use of MUST indicates a keyword usage and requires an action).

2. Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

- **ISO/IEC 8825-1 ITU-T X.690:** Information technology ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)
- **ISO/IEC 10118-3**, Information technology Security techniques Hash-functions Part 3: Dedicated hash-functions, Clause 9, SHA-1
- **ISO/IEC 18033-3**, Information technology Security techniques Encryption algorithms Part 3, Block ciphers, Clause 5.1 AES
- **IEEE P1363**, Institute of Electrical and Electronics Engineers: Standard Specifications For Public-Key Cryptography
- **IETF RFC 2104,** Internet Engineering Task Force Request for Comments 2104: HMAC: Keyed-Hashing for Message Authentication
- **IETF RFC 2119**, Internet Engineering Task Force Request for Comments 2119: Key words for use in RFCs to Indicate Requirement Levels
- PKCS #1 Version 2.1, RSA Cryptography Standard. This document is superseded by P1363, except for section 7.2 that defines the V1.5 RSA signature scheme in use by the TPM.

(standards.iteh.ai)

<u>ISO/IEC 11889-2:2009</u> https://standards.iteh.ai/catalog/standards/sist/42379264-ff8d-4494-8a38-74023a1ee853/iso-iec-11889-2-2009

3. Abbreviated Terms

Abbreviation	Description
AACP	Asymmetric Authorization Change Protocol
ADCP	Authorization Data Change Protocol
ADIP	Authorization Data Insertion Protocol
AIK	Attestation Identity Key
AMC	Audit Monotonic Counter
APIP	Time-Phased Implementation Plan
AuthData	Authentication Data or Authorization Data, depending on the context
BCD	Binary Coded Decimal
BIOS	Basic Input/Output System
CA	Certification of Authority
CDI	Controlled Data Item
СМК	Cerifiable/Certified Migratable Keys
CRT	Chinese Remainder Theorem
CRTM	Core Root of Trust Measurement
CTR	Counter-mode encryption
DAA	Direct Autonomous Attestation ANDARD PREVIEW
DIR	Data Integrity Register (standards.iteh.ai)
DOS	Disk Operating System
DSA	Digital Signature Algorithm ISO/IEC 11889-2:2009
DSAP	Delegate-Specific Authorization: Protocolog/standards/sist/42379264-ff8d-4494-8a38-
ECB	Electronic Codebook Mode 74023a1ee853/iso-iec-11889-2-2009
EK	Endorsement Key
ET	ExecuteTransport or Entity Type
FIPS	Federal Information Processing Standard
GPIO	General Purpose I/O
HMAC	Hash Message Authentication Code
HW	Hardware Interface
IB	Internal Base
I/O	Input/Output
IV	Initialization Vector
КН	Key Handle
LEAP	Lightweight Extensible Authentication Protocol for wireless computer networks
LK	Loaded Key
LOM	Limited Operation Mode
LPC	Low Pin Count
LSB	Least Significant Byte
MA	Migration Authority/Authorization
MIDL	Microsoft Interface Definition Language
MSA	Migration Selection Authority
MSB	Most Significant Byte
NV	Non-volatile

Abbreviation	Description
NVRAM	Non-Volatile Random Access Memory
OAEP	Optimal Asymmetric Encryption Padding
OEM	Original Equipment Manufacturer
OIAP	Object-Independent Authorization Protocol
OID	Object Identifier
OSAP	Object-Specific Authorization Protocol
PCR	Platform Configuration Register
PI	Personal Information
PII	Personally Identifiable Information
POST	Power On Self Test
PRIVEK	Private Endorsement Key
PRNG	Pseudo Random Number Generator
PSS	Probabilistic Signature Scheme
PUBEK	Public Endorsement Key
RNG	Random Number Generator
RSA	Algorithm for public-key cryptography. The letters R, S, and A represent the initials of the first public describers of the algorithm.
RTM	Release to Manufacturing/Ready to Market
RTR	Root of Trust for Reporting
RTS	Root of Trust for Storage Cen STANDARD PREVIEW
SHA	Secure Hash Algorithm (standards, iteh, ai)
SRK	Storage Root Key
STF	Self Test Failed ISO/IEC 11889-2:2009
ТА	Time Authority https://standards.iteh.ai/catalog/standards/sist/42379264-ff8d-4494-8a38-
ТВВ	Threading Building Blocks 74023a1ee853/iso-iec-11889-2-2009
TCG	Trusted Computing Group
TCV	Tick Count Value
TIR	Tick Increment Rate
TIS	TPM Interface Specification
TNC	Trusted Network Connect
TOE	Target of Evaluation
TOS	Trusted Operating System
TPCA	Trusted Platform Computing Alliance
ТРМ	Trusted Platform Module
TPME	Trusted Platform Module Entity
TSC	Tick Stamp Counter
TSC_	TPM Software Connection, when used as a command prefix
TSN	Tick Session Name
TSR	Tick Stamp Reset
TSRB	TickStampReset for blob
TSS	TCG Software Stack
TTP	Trusted Third Party/Time-Triggered Protocol
TS	Tick Stamp
UTC	Universal Time Clock
VPN	Virtual Private Network

Conformance 4.

4.1 Introduction

Start of informative comment

The Protection Profile in the Conformance part of the specification defines the threats that are resisted by a platform. This section, "Protection," describes the properties of selected capabilities and selected data locations within a TPM that has a Protection Profile and has not been modified by physical means.

This section introduces the concept of protected capabilities and the concept of shielded locations for data. The ordinal set defined in part II and III is the set of protected capabilities. The data structures in part II define the shielded locations.

A protected capability is one whose correct operation is necessary in order for the operation of the TPM Subsystem to be trusted.

A shielded location is an area where data is protected against interference and prying, independent of its form.

ISO/IEC 11889 uses the concept of protected capabilities so as to distinguish platform capabilities that must be trustworthy. Trust in the TPM depends critically on the protected capabilities. Platform capabilities that are not protected capabilities must (of course) work properly if the TPM Subsystem

is to function properly Teh STANDARD PREVIEW

ISO/IEC 11889 uses the concept of shielded locations, rather than the concept of "shielded data." While the concept of shielded data is intuitive, it is extraordinarily difficult to define because of the imprecise meaning of the word "data." For example, consider data that is produced in a safe location and then moved into ordinary storages the same data in both locations, but in one it is shielded data and hins the other at as not Also data may not always exist in the same form. For example, it may exist as vulnerable plaintexte-buts also may sometimes be transformed into a logically protected form. This data continues to exist, but doesn't always need to be shielded data the vulnerable form needs to be shielded data, but the logically protected form does not. If a specific form of data requires protection against interference or prying, it is therefore necessary to say "if the data-D exists, it must exist only in a shielded location." A more concise expression is "the data-D must be extant only in a shielded location."

Hence, if trust in the TPM Subsystem depends critically on access to certain data, that data should be extant only in a shielded location and accessible only to protected capabilities. When not in use, such data could be erased after conversion (using a protected capability) into another data structure. Unless the other data structure was defined as one that must be held in a shielded location, it need not be held in a shielded location.

End of informative comment

- 1. The data structures described in ISO/IEC 11889-3 MUST NOT be instantiated in a TPM, except as data in TPM Shielded-Locations.
- 2. The ordinal set defined in ISO/IEC 11889-3 and ISO/IEC 11889-4 MUST NOT be instantiated in a TPM, except as TPM_Protected-Capabilities.
- 3. Functions MUST NOT be instantiated in a TPM as TPM Protected-Capabilities if they do not appear in the ordinal set defined in ISO/IEC 11889-3 or ISO/IEC 11889-4

4.2 Threat

Start of informative comment

This section, "Threat," defines the scope of the threats that must be considered when considering whether a platform facilitates subversion of capabilities and data in a platform.

The design and implementation of a platform determines the extent to which the platform facilitates subversion of capabilities and data within that platform. It is necessary to define the attacks that must be resisted by TPM_Shielded-Locations and TPM_Protected-Capabilities in that platform.

The ISO/IEC 11889 standard defines the attacks that are resisted by the TPM. These attacks must be considered when determining whether the integrity of TPM_Protected-Capabilities and data in TPM_Shielded-Locations can be damaged. These attacks must be considered when determining whether there is a backdoor method of obtaining access to TPM_Protected-Capabilities and data in TPM_Shielded-Locations. These attacks must be considered when determining whether TPM_Protected-Capabilities have undesirable side effects.

End of informative comment

- 1. For the purposes of the "Protection" section of the standard, the threats that MUST be considered when determining whether the TPM facilitates subversion of TPM_Protected-Capabilities or data in TPM_Shielded-Locations SHALL include
 - a. The methods inherent in physical attacks that fail if the TPM complies with the "physical protection" requirements specified by ISO/IEC 11889
 - b. All methods that require execution of instructions in a computing engine in the platform

4.3 Protection of functions (standards.iteh.ai)

Start of informative comment

ISO/IEC 11889-2:2009

A TPM_Protected-Capability must be used to modify TPM_Protected-Capabilities. Other methods must not be allowed to modify TPM_Protected-Capabilities. Otherwise, the integrity of TPM_Protected-Capabilities is unknown.

End of informative comment

1. A TPM SHALL NOT facilitate the alteration of TPM_Protected-Capabilities, except by TPM_Protected-Capabilities.

4.4 **Protection of information**

Start of informative comment

TPM_Protected-Capabilities must provide the only means from outside the TPM to access information represented by data in TPM_Shielded-Locations. Otherwise, a rogue can reveal data in TPM_Shielded-Locations, or create a derivative of data from TPM_Shielded-Locations (in a way that maintains some or all of the information content of the data) and reveal the derivative.

End of informative comment

1. A TPM SHALL NOT export data that is dependent upon data structures described in part 3 of ISO/IEC 11889, other than via a TPM_Protected-Capability.

4.5 Side effects

Start of informative comment

An implementation of a TPM_Protected-Capability must not disclose the contents of TPM_Shielded-Locations. The only exceptions are when such disclosure is inherent in the definition of the capability or in the methods used by the capability. For example, a capability might be designed specifically to reveal hidden data or might use cryptography and hence always be vulnerable to cryptanalysis. In such cases, some disclosure or risk of disclosure is inherent and cannot be avoided. Other forms of disclosure (by side effects, for example) must always be avoided.

End of informative comment

1. The implementation of a TPM_Protected-Capability in a TPM SHALL NOT facilitate the disclosure or the exposure of information represented by data in TPM-shielded–locations, except by means unavoidably inherent in the TPM definition.

4.6 **Exceptions and clarifications**

Start of informative comment

These exceptions to the blanket statements in the generic "protection" requirements (above) are fully compatible with the intended effect of those statements. These exceptions affect ISO/IEC 11889-data that is available as plain-text outside the TPM and ISO/IEC 11889-data that can be used without violating security or privacy. These exceptions are valuable because they approve use of TPM resources by vendor-specific commands in particular circumstances.

These clarifications to the blanket statements of the generic "protection" requirements (above) do not materially change the effect of those statements, but serve to approve specific legitimate interpretations of the requirements.

End of informative comment ISO/IEC 11889-2:2009

https://standards.iteh.ai/catalog/standards/sist/42379264-ff8d-4494-8a38-

- 1. A Shielded Location is a place (memory, register poetc.) where data is protected against interference and exposure, independent of its form
- 2. A TPM_Protected-Capability is an operation defined in and restricted to those identified in part 3 and 4 of ISO/IEC 11889
- 3. A vendor specific command or capability MAY use the standard ISO/IEC 11889 owner/operator authorization mechanism
- 4. A vendor specific command or capability MAY utilize a TPM_PUBKEY structure stored on the TPM so long as the usage of that TPM_PUBKEY structure is authorized using the standard ISO/IEC 11889 authorization mechanism.
- 5. A vendor specific command or capability MAY use a sequence of standard ISO/IEC 11889 commands. The command MUST propagate the locality used for the call to the used ISO/IEC 11889 commands or capabilities, or set locality to 0.
- 6. A vendor specific command or capability that takes advantage of exceptions and clarifications to the "protection" requirements MUST be defined as part of the security target of the TPM. Such a vendor specific command or capability MUST be evaluated to meet the Platform Specific TPM and System Security Targets.
- 7. If a TPM employs vendor-specific cipher-text that is protected against subversion to the same or greater extent as internal TPM-resources stored outside the TPM with ISO/IEC 11889-defined methods, that vendor-specific cipher-text does not necessarily require protection from physical attack. If a TPM location stores only vendor-specific cipher-text that does not require protection from physical attack, that location can be ignored when determining whether the TPM complies with the "physical protection" requirements specified by ISO/IEC 11889.