

Designation: F2620 – 06

Standard Practice for Heat Fusion Joining of Polyethylene Pipe and Fittings¹

This standard is issued under the fixed designation F2620; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice describes procedures for making joints with polyethylene (PE) pipe and fittings by means of heat fusion joining in, but not limited to, a field environment. Other suitable heat fusion joining procedures are available from various sources including pipe and fitting manufacturers. This standard does not purport to address all possible heat fusion joining procedures, or to preclude the use of qualified procedures developed by other parties that have been proved to produce reliable heat fusion joints.

1.2 The parameters and procedures are applicable only to joining polyethylene pipe and fittings of related polymer chemistry. They are intended for PE fuel gas pipe per Specification D2513 and PE potable water, sewer and industrial pipe manufactured per Specification F714, Specification D3035, and AWWA C901 and C906. Consult with the pipe manufacturers to make sure they approve this procedure for the pipe to be joined (see Appendix X1).

NOTE 1—Information about polyethylene pipe and fittings that have related polymer chemistry is presented in Plastics Pipe Institute (PPI) TR-33 and TR-41.

1.3 Parts that are within the dimensional tolerances given in present ASTM specifications are required to produce sound joints between polyethylene pipe and fittings when using the joining techniques described in this practice.

1.4 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.

1.5 The text of this practice references notes, footnotes, and appendixes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the practice.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 ASTM Standards:²
- D2513 Specification for Thermoplastic Gas Pressure Pipe, Tubing, and Fittings
- D2737 Specification for Polyethylene (PE) Plastic Tubing
- D3035 Specification for Polyethylene (PE) Plastic Pipe (DR-PR) Based on Controlled Outside Diameter
- D3261 Specification for Butt Heat Fusion Polyethylene (PE) Plastic Fittings for Polyethylene (PE) Plastic Pipe and Tubing
- F714 Specification for Polyethylene (PE) Plastic Pipe (SDR-PR) Based on Outside Diameter
- F905 Practice for Qualification of Polyethylene Saddle-Fused Joints
- F1056 Specification for Socket Fusion Tools for Use in Socket Fusion Joining Polyethylene Pipe or Tubing and Fittings
- 2.2 PPI Documents:
- **TR-33** Generic Butt Fusion Joining Procedure for Field Joining of Polyethylene³
- TR-41 Generic Saddle Fusion Joining Procedure for Polyethylene Gas Piping³
- 2.3 AWWA Documents:
- AWWA C901 Standard for Polyethylene (PE) Pressure Pipe and Tubing, ¹/₂ in. (13 mm) through 3 in. (76 mm), for Water Service⁴
- AWWA C906 Standard for Polyethylene (PE) Pressure Pipe and Fittings, 4 in. (100 mm) through 63 in. (1575 mm), for Water Distribution and Transmission⁴

3. Summary of Practice

3.1 The principle of heat fusion joining of polyethylene (PE) pipe is to heat two prepared surfaces to a designated temperature, then fuse them together by application of a

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

¹ This practice is under the jurisdiction of ASTM Committee F17 on Plastic Piping Systems and is the direct responsibility of Subcommittee F17.20 on Joining.

Current edition approved Dec. 1, 2006. Published December 2006.. DOI: 10.1520/F2620-06.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ Available from Plastic Pipe Institute Inc., 1825 Connecticut Ave., NW Suite 680 Washington, DC 20009.

⁴ Available from American Water Works Association (AWWA), 6666 W. Quincy Ave., Denver, CO 80235, http://www.awwa.org.

sufficient force. This force causes the melted materials to flow and mix, thereby resulting in fusion.

3.2 The heat-fusion procedures covered in this practice are socket fusion, butt fusion, and saddle fusion.

3.2.1 *Procedure 1, Socket Fusion*—The socket-fusion procedure involves simultaneously heating the outside surface of a pipe end and the inside of a fitting socket, which is sized to be smaller than the smallest outside diameter of the pipe. After the proper melt has been generated at each face to be mated, the two components are joined by inserting one component into the other. See Fig. 1. The fusion bond is formed at the interface resulting from the interference fit. The melts from the two components flow together and fuse as the joint cools. Optional alignment devices are used to hold the pipe and socket fitting in longitudinal alignment during the joining process; especially with pipe sizes IPS 3 in. (89 mm) and larger. Automated socket fusion is not addressed in this procedure.

3.2.2 *Procedure 2, Butt Fusion*—The butt-fusion procedure in its simplest form consists of heating the squared ends of two pipes, a pipe and a fitting, or two fittings, by holding them against a heated plate, removing the heater plate when the proper melt is obtained, promptly bringing the ends together, and allowing the joint to cool while maintaining the appropriate applied force.

3.2.2.1 An appropriately sized butt fusion machine is used to clamp, align and face the pipe or fitting ends and to apply the specified fusion force. See Fig. 2.

3.2.3 *Procedure 3, Saddle Fusion*—The saddle-fusion procedure involves melting the concave surface of the base of a saddle fitting, while simultaneously melting a matching pattern on the surface of the pipe, bringing the two melted surfaces together and allowing the joint to cool while maintaining the appropriate applied force. See Fig. 3.

3.2.3.1 An appropriately sized saddle fusion machine is used to clamp the pipe main and the fitting, align the parts and apply the specified fusion force.

4. Significance and Use

4.1 The procedures described in Sections 7-9 are primarily intended for (but not limited to) field joining of polyethylene (PE) pipe and fittings, using suitable equipment and appropriate environmental control procedures. When properly implemented, strong pressure/leak-tight joints are produced. When these joints are destructively tested, the failure occurs outside the fusion joined area.

4.2 Melt characteristics, average molecular weight and molecular weight distribution are influential factors in establishing suitable fusion parameters; therefore, consider the manufacturer's instructions in the use or development of a specific fusion procedure. See Annex A1.

4.3 The socket fusion, butt fusion, and saddle fusion procedures in this practice are suitable for joining PE gas pipe and fittings, PE water pipe and fittings, and PE general purpose pipes and fittings made to PE product specifications from organizations such as ASTM, AWWA, API, and ISO that are used in pressure, low pressure and non-pressure applications. For gas applications, qualification of the procedure by testing joints made using the procedure in accordance with regulations from the authority having jurisdiction are required.

5. Operator Experience

5.1 Skill and knowledge on the part of the operator are required to obtain a good quality joint. This skill and knowledge is obtained by making joints in accordance with proven procedures under the guidance of skilled operators. Evaluate operator proficiency by testing sample joints.

https://standards.iteh.ai/catalog/standards/sist/682ba288-e5a8-4f6d-9b9d-92e67c31f894/astm-f2620-06

FIG. 1 Socket Fusion

🕼 F2620 – 06

5.2 The party responsible for the joining of polyethylene pipe and fittings shall ensure that detailed procedures developed in conjunction with applicable codes and regulations and the manufacturers of the pipe, fittings, and joining equipment involved, including the safety precautions to be followed, are issued before actual joining operations begin.

6. Apparatus—General Recommendations

6.1 *Heating Tool*—Electric heating tools come in a variety of sizes that match the fusion machines capabilities. They are designed with enough wattage and electronic control to maintain the specified heater face temperature required in this

procedure. The range of the heater control shall be larger than the heating temperature specification (the typical control range is 50° F (30° C) above and below the maximum and minimum required heating tool surface temperatures. Electric heating plates maintain consistent fusion temperatures when provided with an adequate power source.

6.2 *Heating Tool Faces*—Heating tools may be made from materials such as aluminum, stainless steel, copper, or copper alloys. Polyethylene material may stick to hot metal heating surfaces. This sticking may be minimized by applying a non-stick coating to the heating surfaces or by fitting a high-temperature, non-stick fabric over the heating surfaces. The heating plate surfaces, coated or uncoated, shall be kept clean and free of contaminants such as dirt, grease and plastic build-up, which may cause excessive sticking and create unsatisfactory joints. Most of these contaminants are removed from the hot tool surfaces using a clean, dry, oil-free lint-free cloth. Do not use synthetic fabrics which may char and stick to the fusion surface. Some pigments, such as carbon black, may stain a heating surface and probably cannot be removed; such stains will not contaminate the joint interface.

6.2.1 After a period of time in service, non-stick coatings or fabrics will deteriorate and become less effective. Deteriorated fabrics shall be replaced, and worn, scratched, or gouged non-stick coatings shall be re-coated when they lose effective-ness. Heat fusion quality may be adversely affected by deteriorated non-stick surfaces. Spray-on chemicals, such as non-stick lubricants or oils shall not be applied to heating iron surfaces as they will contaminate the joint.

6.3 *Temperature Indicator*—Heating tools shall be equipped with a thermometer or other built-in temperature indicating device. This device indicates the internal temperature of the heating iron, which is usually higher than temperature of the heating tool surfaces. Use a pyrometer, or other temperature measuring device, on the first joint of the day and periodically during the day to verify the temperature of the tool face surfaces within the pipe or fitting contact area. Select multiple checkpoints to ensure uniform surface temperature. An infrared pyrometer is calibrated by comparison to a calibrated surface pyrometer and adjusted to agree on each heating tool.

NOTE 2—A significant temperature variation, that is, cold spots, on the heating tool surfaces may indicate a faulty heating iron which may need to be serviced before it can be used.

7. Procedure 1—Socket Fusion

7.1 Apparatus:

7.1.1 *Socket Fusion Tools*—Socket fusion tools consist of a heating tool, heating tool faces, rounding clamps (cold rings), depth gage/chamfer tools, and pipe/fittings made to ASTM specifications.

7.1.2 *Heating Tool*—In order to obtain a proper melt, it is necessary for a uniform temperature to be maintained across the heating tool faces. An electrical tool shall have sufficient wattage and control to maintain the specified surface temperature of the tool faces.

7.1.3 *Heating Tool Faces*—Consisting of two parts, a male end for the interior socket surface and a female end for the exterior pipe surface. Both parts shall be made to such

tolerances as to cause an interference fit. Heating tool faces are produced to Specification F1056 dimensions, and are coated with a non-stick material to keep melted pipe and fitting material from sticking to the face.

7.1.4 Alignment Jig—The alignment jig is an optional tool which consists of two sets of devices holding the components in alignment to each other. One set of holding devices is fixed, and the other allows longitudinal movement for making the joint.

7.1.5 *Rounding Clamps*, (cold ring) to maintain roundness of the pipe and control the depth of pipe insertion into the socket during the joining operation.

7.1.6 *Depth Gage*, for proper positioning of the rounding clamp on the pipe.

7.1.7 Chamfering Tool, to bevel the end of the pipe.

Note 3—The depth gage and chamfering tool may be combined into a single tool.

7.1.8 *Tubing Cutter*, to obtain a square end cut on the pipe.

7.1.9 *Fitting Puller*, an optional tool to assist in the removal of the fitting from the heating tool and to hold the fitting during assembly.

7.2 Procedure:

7.2.1 Attach the proper size heater faces to the heating tool, and bring the surface temperature of the tool faces to 490 to 510° F (254 to 266° C). Use a pyrometer, or other temperature measuring device, on the first joint of the day and periodically during the day to verify the temperature of the tool face surfaces within the pipe or fitting contact area. Select multiple checkpoints to ensure uniform surface temperature. Heating tool thermometers measure the internal temperature of the heating tool, which is typically higher than the surface temperature of the heating tool faces.

7.2.2 Cut the pipe end squarely, and clean the pipe end and fitting, both inside and outside, by wiping with a clean, dry, oil-free, lint-free cloth.

7.2.3 Chamfer the outside edge of the pipe end slightly and fix the rounding clamp about the pipe as determined from the depth gage. (See Note 4.)

7.2.4 Push the socket fitting onto the preheated fitting tool face first, and then push the pipe into the pipe-side tool face until the rounding clamps make contact with the heating faces.

7.2.5 Heat the pipe end and the fitting socket for the time required to obtain a proper melt. Proper melt is a function of material, time, tool temperature, and the size of the parts. Pipe and fittings of larger diameters require more time to reach the proper melt consistency than those of smaller diameters. Under-heated or overheated materials will not form a good bond. Contact the fitting manufacturer for the recommended heating times.

7.2.6 At the end of the heating time, simultaneously remove the pipe and fitting straight out from the tool, using a snap action. Immediately insert the pipe straight into the socket of the fitting so the rounding clamp is flush against the end of the fitting socket. Hold or block the joint in place until the melts of the mating surfaces have solidified. The exact cooling time depends on the size of the pipe and the material being fused. 7.2.7 Remove the rounding clamp, and inspect the melt pattern at the end of the socket for a complete impression of the rounding clamp in the melt surface. There shall be no gaps, voids, or unbonded areas. Visually inspect and compare the joint against recommended appearance guidelines (see Appendix X2).

7.2.8 Allow for extremes in weather when making field joints. Heating times, dimensional changes, etc., are affected by extreme weather conditions.

NOTE 4—Some recommend using a 50-60 grit emery or garnet cloth to roughen the outside of the pipe and inside of the fitting as a means of minimizing any possible skin interface when making the fusion. Sandpaper is not recommended for this purpose, as it might disintegrate and contaminate the joint interface. If roughening is performed, first clean the surfaces before roughening. Clean dust and particles from the roughened surfaces afterwards by wiping with a clean, dry, oil-free cloth.

8. Procedure 2—Butt Fusion

8.1 Apparatus:

8.1.1 *Heating Tool*—The heating tool shall have sufficient area to adequately cover the ends of the size of pipe to be joined. This electrical tool shall have sufficient wattage and control to maintain the specified surface temperature of the tool faces. It shall also be equipped with heater faces that are coated with a non-stick material to prevent sticking to the pipe surface.

8.1.2 Butt Fusion Machine—A Butt Fusion Machine has three basic parts: (1) a stationary clamping fixture and a movable clamping fixture for aligning and holding each of the two parts to be fused. This may or may not include the power supply to operate the machine; (2) a facer for simultaneously preparing the ends of the parts to be joined (Note 5); and (3) appropriate inserts for clamping different pipe sizes or fitting shapes. Butt Fusion Machines are operated manually or hydraulically. Some have their own power supply and some require a separate generator. They are available in a variety of sizes to fuse pipe and tubing produced to ASTM and other industry specifications.

NOTE 5—A facer is a rotating cutting device used to square-off the pipe or fitting ends to obtain properly mating fusion surfaces. If so equipped, facing should continue until a positive mechanical stop on the butt fusion machine is reached.

8.1.3 *Pipe Support Stands*—Optional pipe support stands are used to support the pipe on both ends of the butt fusion machine to help with linear pipe alignment in the machine.

8.2 Setup:

8.2.1 Butt fusion machine setup parameters are prescribed in Table 1.

8.2.2 An interfacial pressure of 60 to 90 psi (0.41 to 0.62 MPa) is used to determine the force required to butt fuse the pipe components. Multiply the interfacial pressure times the pipe area to calculate the fusion force required (lb). For manually operated fusion machines, enough force should be applied to roll the bead back to the pipe surface. A torque wrench may be used to apply the proper force. Manual fusion without a torque wrench has been used successfully by many gas utilities. For hydraulically operated fusion machines, the fusion force is divided by the total effective piston area of the movable carriage cylinders to give a hydraulic gauge reading in psi. This gauge reading is the theoretical fusion gauge pressure. The internal and external drag factors are added to this figure to obtain the actual fusion pressure required by the machine. (The hydraulic gauge reading and the interfacial pressure are not the same value.) This drag pressure is found by bringing the faced pipe ends within 2 in. (50 mm) of each other and increase the pressure on the carriage until it starts moving. Back off the pressure until the carriage is barely moving and record the drag pressure. Add this pressure to the theoretical fusion pressure to obtain the fusion machine gauge pressure required for fusion.

NOTE 6—Interfacial pressure is used to determine fusion joining pressure settings for hydraulic butt fusion machines when joining specific pipe diameters and DR's. Interfacial pressure is *not* the gauge pressure.

8.3 Procedure:

8.3.1 Clean the inside and outside of the components (pipe or pipe and fitting) to be joined. Remove all foreign matter from the piping component surfaces where they will be clamped in the butt fusion machine.

8.3.2 If applicable, place pipe support stands at both ends of the butt fusion machine and adjust the support stands to align the pipe with the fusion machine centerline. Install the pipes or fittings being joined in the stationary and movable clamps of the butt fusion machine. Leave enough pipe protruding through the clamps to allow for facing and clamp the pipe or fitting in the machine.

Setup Parameter			
Manual Butt Fusion Machine	Hydraulic Butt Fusion Machine	Required Condition	
Set heating tool temperature and heat to specified temperature		The surface temperature of heating tool faces must be 400 to 450°F (204 to 232°C). (See X1.1.) A pyrometer or other surface temperature measuring device should be used periodically to insure proper surface temperature of the heating tool faces.	
Install inserts	Install inserts	Install inserts for the pipe OD or the fitting being fused.	
Electric power supply	Electric power supply	Check field generator for adequate power supply.	
Manual pressure	Set facing pressure	As required. Observe butt fusion machine manufacturer's instructions for setting facing pressure.	
Manual pressure	Set heating pressure	Observe the pipe and butt fusion machine manufacturer's instructions for setting heating pressures.	
Manual pressure	Set fusion joining pressure	Determine fusion joining pressure for the pipe OD and dimension ratio (DR) using 60 to 90 psi (414 to	
(Drag a manual adjustment)		621 kPa) interface pressure. Observe pipe and butt fusion machine manufacturer's instructions to determine the theoretical fusion joining pressure. Drag pressure is the amount of pressure required to get the carriage to move. Add this pressure to the theoretical fusion joining pressure to get the actual machine gage pressure to set.	

TABLE 1 Butt Fusion Machine Setup Parameters

8.3.2.1 Take care when placing pipe or fittings in the butt fusion machine. Pipes shall be aligned before the alignment clamp is closed. Do not force the pipe into alignment by pushing it against the side of an open butt fusion machine clamp. Pipes that are freshly cut and molded fittings generally do not have toe-in, and when mated to old-cut pipe or fabricated fittings, removing toe-in can ease adjustment for high-low alignment.

8.3.3 Face the piping component ends until the facer bottoms out on the stops and is locked between the jaws to establish clean, parallel mating surfaces between the pipe/ fitting ends (Note 5). Open the jaws and remove the facer and all shavings and debris from the facing operation with a clean, lint-free cotton cloth. Bring the pipe/fitting ends together with minimal force. A visual inspection of this operation should verify a square face, perpendicular to the pipe centerline on each pipe end and with no detectable gap.

8.3.4 Check the pipe ends for high-low alignment and out-of-roundness. If adjustment is needed, adjust the high side down by tightening the high side clamp. Do not loosen the low side clamp or slippage may occur during fusion. Re-face the pipe or fitting ends if excessive adjustment is required (more than 180° rotation of the clamp knob)and remove any shavings from the re-facing operation with a clean, lint-free cotton cloth. The maximum high-low misalignment allowed in the butt fusion procedure is to be less than 10% of the pipe minimum wall thickness.

8.3.5 Verify that the heater surface temperatures are in the specified temperature range 400 to 450°F (204 to 232°C). (See Appendix X1.) A pyrometer or other surface temperature measuring device should be used before the first joint of the day and periodically throughout the day to insure proper temperature of the heating tool face. Place the heating tool in the butt fusion machine between the piping component ends and bring the pipe or fitting ends into full contact with the heating tool at fusion pressure. Briefly ensure full contact between piping component ends and the heating tool and then reduce the pressure to drag pressure but without breaking contact between the piping component ends and the heating tool. (On larger pipe sizes, fusion pressure must be maintained until a slight melt is observed around the circumference of the pipe or fitting before releasing pressure.) Maintain contact, without force, while a bead of molten polyethylene develops between the heater and the pipe or fitting ends. Melt bead size is dependent on pipe size. See Table 2 for approximate melt bead sizes.

8.3.6 When the proper bead size is observed, move the piping component ends away from the heating tool. Remove the heating tool and quickly inspect the pipe ends (within 3 s). (See Appendix X1.)

8.3.6.1 Acceptable melt appears flat and smooth with no unmelted areas. If acceptable melt is observed, immediately bring the molten pipe ends together at the calculated fusion force determined by the pipe size and machine capability. With

Pipe Size	"A" Approximate Melt Bead Size
1 ¹ / ₄ in. IPS and smaller (40 mm and smaller)	¹ / ₃₂ to ¹ / ₁₆ in. (1 to 2 mm)
Greater than IPS 11/4 in. (40mm) through IPS 3 in. (90 mm)	1/16 in. (2 mm)
Greater than IPS 3 in. (90 mm) through IPS 8 in. (225 mm)	1/8 to 3/16 in. (3 to 5 mm)
Greater than IPS 8 in. (225 mm) through IPS 12 in. (315 mm)	³ / ₁₆ to ¹ / ₄ in. (5 to 6 mm)
Greater than IPS 12 in. (315 mm) through IPS 24 in. (630 mm)	¹ /4 to 7/16 in. (6 to 11 mm)
Greater than IPS 24 in. (630 mm) through IPS 36 in. (915 mm)	7∕16 in. (11 mm)
Greater than IPS 36 in. (915 mm) through IPS 65 in. (1651 mm)	9⁄16 in. (14 mm)