

Reference number
ISO/IEC 18033-4:2005/Amd.1:2009(E)

© ISO/IEC 2009

INTERNATIONAL
STANDARD

ISO/IEC
18033-4

First edition
2005-07-15

AMENDMENT 1
2009-12-15

Information technology — Security
techniques — Encryption algorithms —
Part 4:
Stream ciphers

AMENDMENT 1: Rabbit and Decim

Technologies de l'information — Techniques de sécurité — Algorithmes
de chiffrement —

Partie 4: Chiffrements en flot

AMENDEMENT 1: Rabbit et Decim

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 18033-4:2005/Amd 1:2009
https://standards.iteh.ai/catalog/standards/sist/be96898d-d1ae-497a-a3ad-

659664f04339/iso-iec-18033-4-2005-amd-1-2009

ISO/IEC 18033-4:2005/Amd.1:2009(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2009
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2009 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 18033-4:2005/Amd 1:2009
https://standards.iteh.ai/catalog/standards/sist/be96898d-d1ae-497a-a3ad-

659664f04339/iso-iec-18033-4-2005-amd-1-2009

ISO/IEC 18033-4:2005/Amd.1:2009(E)

© ISO/IEC 2009 – All rights reserved iii

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 1 to ISO/IEC 18033-4:2005 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information technology, Subcommittee SC 27, IT Security techniques.

This Amendment introduces two additional keystream generators for use as stream ciphers: Rabbit and
Decimv2.

Rabbit is specified in 7.3, and test vectors are given in A.4.

Decimv2 is specified in 7.4, and test vectors are given in A.5.

For all keystream generators, security statements are given in Annex B, and object identifiers are given in
Annex C.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 18033-4:2005/Amd 1:2009
https://standards.iteh.ai/catalog/standards/sist/be96898d-d1ae-497a-a3ad-

659664f04339/iso-iec-18033-4-2005-amd-1-2009

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 18033-4:2005/Amd 1:2009
https://standards.iteh.ai/catalog/standards/sist/be96898d-d1ae-497a-a3ad-

659664f04339/iso-iec-18033-4-2005-amd-1-2009

ISO/IEC 18033-4:2005/Amd.1:2009(E)

© ISO/IEC 2009 – All rights reserved 1

Information technology — Security techniques — Encryption
algorithms —

Part 4:
Stream ciphers

AMENDMENT 1: Rabbit and Decim

Page 4, Clause 4, immediately before bi

Add the following:

AND Bitwise logical AND operation.

Page 4, Clause 4, line 21

Replace with the following:

OR Bitwise logical OR operation.

Page 5, immediately before 4.1

Add the following note:

NOTE Additional variables and notation specific to a given keystream generator are introduced with the algorithm.

Page 23, after 7.2.7

Add the following new subclauses:

7.3 Rabbit keystream generator

Rabbit is a keystream generator which uses a 128-bit secret key K, a 64-bit initialization vector IV, and a 513-
bit internal state variable Si (i ≥ 0). It outputs a 128-bit keystream block Zi at every iteration of the function Strm.

The 513 bits of the internal state Si are divided between eight 32-bit state variables X0
(i), ...,X7

(i), eight 32-bit
counter variables C0

(i), ...,C7
(i), and one counter carry bit b(i).

The description uses the notation defined in Section 4 of the standard. In addition, a special notation for bit
arrays is used to enhance readability: when labeling the bits of a variable A, the least significant bit is denoted
by A[0]. The notation A[h..g] represents bits h through g of variable A, where bit position h is more significant
than bit position g.

NOTE 1 For Rabbit, the maximum recommended amount of keystream produced from a given key K is 264 keystream
blocks. This provides a large security margin against cryptanalysis, while at the same time implying no practical limitations
on the applicability of the algorithm.

NOTE 2 We refer to [1] for the original proposal of the cipher and to [2] for an overview of its cryptographic security.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 18033-4:2005/Amd 1:2009
https://standards.iteh.ai/catalog/standards/sist/be96898d-d1ae-497a-a3ad-

659664f04339/iso-iec-18033-4-2005-amd-1-2009

ISO/IEC 18033-4:2005/Amd.1:2009(E)

2 © ISO/IEC 2009 – All rights reserved

7.3.1 Additional variables and notation

In the specification of the Rabbit keystream generator, the following specific notation is used:

A Constant for Rabbit

b Carry bit for Rabbit

C Counter variable for Rabbit

g Subfunction used for Rabbit

X Inner state variable for Rabbit

In addition, a number of other symbols are used for auxiliary local variables in algorithm descriptions. These
symbols occur only within a given function specification and do not have a global meaning. They are thus
described in the function declaration.

7.3.2 Initialization function Init

In the following, the initialization function Init of Rabbit is specified.

INPUT: 128-bit key K, 64-bit initialization vector IV.

OUTPUT: Initial value of the state variable S0 = (b(0), X0
(0), ...,X7

(0), C0
(0), ...,C7

(0)).

Local variables: counters i, j

1. Let K0 = K[15..0], K1 = K[31..16], ..., and K7 = K[127..112].

2. Set S-9 as follows:

2.1. Set b(-9) = 0.

2.2. For j = 0, 1, ..., 7:

2.2.1. If j is even:

2.2.1.1. Set Xj
(-9) = K(j+1 mod 8) || Kj.

2.2.1.2. Set Cj
(-9) = K(j+4 mod 8) || K(j+5 mod 8).

2.2.2. Else:

2.2.2.1. Set Xj
(-9) = K(j+5 mod 8) || K(j+4 mod 8).

2.2.2.2. Set Cj
(-9) = Kj || K(j+1 mod 8).

3. Iterate the next-state function Next four times:

3.1. For i = -8, -7, -6, -5:

3.1.1. Si = Next (Si-1)

4. Set S-4 as follows:

4.1. Modify the counters as follows:

C0
(-4) = C0

(-5) ⊕ X4
(-5) ⊕ IV[31..0] C1

(-4) = C1
(-5) ⊕ X5

(-5) ⊕ (IV[63..48] || IV[31..16])
C2

(-4) = C2
(-5) ⊕ X6

(-5) ⊕ IV[63..32] C3
(-4) = C3

(-5) ⊕ X7
(-5) ⊕ (IV[47..32] || IV[15..0])

C4
(-4) = C4

(-5) ⊕ X0
(-5) ⊕ IV[31..0] C5

(-4) = C5
(-5) ⊕ X1

(-5) ⊕ (IV[63..48] || IV[31..16])
C6

(-4) = C6
(-5) ⊕ X2

(-5) ⊕ IV[63..32] C7
(-4) = C7

(-5) ⊕ X3
(-5) ⊕ (IV[47..32] || IV[15..0])

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 18033-4:2005/Amd 1:2009
https://standards.iteh.ai/catalog/standards/sist/be96898d-d1ae-497a-a3ad-

659664f04339/iso-iec-18033-4-2005-amd-1-2009

ISO/IEC 18033-4:2005/Amd.1:2009(E)

© ISO/IEC 2009 – All rights reserved 3

4.2. Set X0
(-4) = X0

(-5), ..., X7
(-4) = X7

(-5), b(-4) = b(-5).

5. Iterate the next-state function Next four times:

5.1. For i = -3, -2, -1, 0:

5.1.1. Si = Next (Si-1)

6. Output S0 = (b(0), X0
(0), ...,X7

(0), C0
(0), ...,C7

(0)).

NOTE The IV is mixed into the internal state in steps 4 and 5 of the algorithm. If the application requires
frequent re-initialization under the same key, it makes sense to store the internal state after step 3 as master
state and to perform only steps 4 through 6 for re-initialization.

7.3.3 Next-state function Next

The next-state function Next of Rabbit is specified as follows:

INPUT: State variable Si = (b(i), X0
(i), ...,X7

(i), C0
(i), ...,C7

(i)).

OUTPUT: State variable Si+1 = (b(i+1), X0
(i+1), ...,X7

(i+1), C0
(i+1), ...,C7

(i+1)).

Local variables: counter j, 33-bit positive integer temp

1. Set constants A0, ..., A7 as follows:

A0 = 0x4D34D34D A1 = 0xD34D34D3
A2 = 0x34D34D34 A3 = 0x4D34D34D
A4 = 0xD34D34D3 A5 = 0x34D34D34
A6 = 0x4D34D34D A7 = 0xD34D34D3

2. Let b0
(i+1) = b(i)

3. For j = 0, 1, ..., 7:

3.1. Let temp = Cj
(i) + Aj + bj

(i+1); this results in a 33-bit value.

3.2. Let bj+1
(i+1) = temp[32].

3.3. Let Cj
(i+1) = temp[31..0].

4. Let b(i+1) = b8
(i+1)

5. For j = 0, 1, ..., 7:

5.1. Let Gj = g(Xj
(i), Cj

(i+1)). The detailed description of the function g is given in 7.3.5.

6. Modify internal state as follows:

X0
(i+1) = G0 +32 (G7 <<<32 16) +32 (G6 <<<32 16)

X1
(i+1) = G1 +32 (G0 <<<32 8) +32 G7

X2
(i+1) = G2 +32 (G1 <<<32 16) +32 (G0 <<<32 16)

X3
(i+1) = G3 +32 (G2 <<<32 8) +32 G1

X4
(i+1) = G4 +32 (G3 <<<32 16) +32 (G2 <<<32 16)

X5
(i+1) = G5 +32 (G4 <<<32 8) +32 G3

X6
(i+1) = G6 +32 (G5 <<<32 16) +32 (G4 <<<32 16)

X7
(i+1) = G7 +32 (G6 <<<32 8) +32 G5

7. Output Si+1 = (b(i+1), X0
(i+1), ...,X7

(i+1), C0
(i+1), ...,C7

(i+1)).

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 18033-4:2005/Amd 1:2009
https://standards.iteh.ai/catalog/standards/sist/be96898d-d1ae-497a-a3ad-

659664f04339/iso-iec-18033-4-2005-amd-1-2009

ISO/IEC 18033-4:2005/Amd.1:2009(E)

4 © ISO/IEC 2009 – All rights reserved

7.3.4 Keystream function Strm

The keystream function Strm of Rabbit is specified as follows:

INPUT: State variable Si = (b(i), X0
(i), ...,X7

(i), C0
(i), ...,C7

(i)).

OUTPUT: Keystream block Zi.

1. Set Zi as follows:

 Zi
 [15..0] = X0

(i) [15..0] ⊕ X5
(i) [31..16]

 Zi
 [31..16] = X0

(i) [31..16] ⊕ X3
(i) [15..0]

 Zi
 [47..32] = X2

(i) [15..0] ⊕ X7
(i) [31..16]

 Zi
 [63..48] = X2

(i) [31..16] ⊕ X5
(i) [15..0]

 Zi
 [79..64] = X4

(i) [15..0] ⊕ X1
(i) [31..16]

 Zi
 [95..80] = X4

(i) [31..16] ⊕ X7
(i) [15..0]

 Zi
 [111..96] = X6

(i) [15..0] ⊕ X3
(i) [31..16]

 Zi
 [127..112] = X6

(i) [31..16] ⊕ X1
(i) [15..0]

2. Output Zi.

7.3.5 Function g

The function g is specified as follows:

INPUT: Two 32-bit parameters u and v.

OUTPUT: 32-bit result g(u,v).

Local variables: 64-bit positive integer temp

1. Let temp = (u +32 v)2; this results in a 64-bit value.

2. Let g(u,v) = temp[31..0] ⊕ temp[63..32].

3. Output g(u,v).

7.4 Decimv2 keystream generator

Decimv2 is a keystream generator which uses an 80-bit secret key K and a 64-bit initialization vector IV.
Decimv2 is composed of a 192-bit maximum length linear feedback shift register A, filtered by a 14-variable
Boolean function F. In keystream generation mode, the output of F is used to feed a compression block which
is a function called ABSG, whose output finally passes through a 32-bit long buffer B to regulate the
keystream output rate.

NOTE 1 See Reference [3] for the theoretical background on the design rationale of Decimv2.

The state variable Si of Decimv2 consists of the 192-bit value a(i) = (a0
(i) , a1

(i),…, a191
(i)) of register A, a 3-bit

variable T(i) which corresponds to the state of the compression function ABSG, the 32 bits b(i) = (b0
(i) , b1

(i),…,
b31

(i)) in buffer B, and the number I(i) of bits in buffer B that are ready to be output.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 18033-4:2005/Amd 1:2009
https://standards.iteh.ai/catalog/standards/sist/be96898d-d1ae-497a-a3ad-

659664f04339/iso-iec-18033-4-2005-amd-1-2009

ISO/IEC 18033-4:2005/Amd.1:2009(E)

© ISO/IEC 2009 – All rights reserved 5

Figure 10 — Schematic drawing of Decimv2.

The Init function, defined in detail in 7.4.2, takes as input the 80-bit key K and the 64-bit initialization vector IV ,
and produces the initial value of the state variable S0

 = (a(0), T(0), b(0), I(0)).

The Next function, defined in detail in 7.4.4, takes as an input the value of the state variable Si
 = (a(i) , T(i), b(i),

I(i)) and produces as output the next value of the state variable Si+1
 = (a(i+1), T(i+1), b(i+1), I(i+1)). The Next function

can operate in any of three different modes, depending on whether the iteration performed is part of the
initialization of the register, the initialization of the buffer, or the subsequent keystream generation.

The Strm function, defined in detail in 7.4.5, takes as an input the value of the state variable Si
 = (a(i), T(i), b(i),

I(i)), and produces as output a keystream bit Zi.

NOTE 2 The standard output rate of Decimv2 is 1/4. Therefore, in order to synchronize the state variable and the
keystream output, the Next function performs four standard iterations of Decimv2 as specified in [3].

NOTE 3 The compression function of Decimv2 has a variable output rate, equal to 1/3 on average. Therefore, a buffer
mechanism is used to ensure a constant output rate. The differences between the buffer output rate and the
compression function output rate, as well as the buffer length, have been chosen to ensure that the buffer
always functions as expected with overwhelming probability, as described in Section 7.4.2.

7.4.1 Additional variables and notation

In the specification of the DecimV2 keystream generator, the following specific notation is used:

a Inner state variable for Decimv2

ABSG Compression function used for Decimv2

b, b' Inner state variables for Decimv2

B Buffering function used for Decimv2

F Linear feedback function used for Decimv2

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 18033-4:2005/Amd 1:2009
https://standards.iteh.ai/catalog/standards/sist/be96898d-d1ae-497a-a3ad-

659664f04339/iso-iec-18033-4-2005-amd-1-2009

ISO/IEC 18033-4:2005/Amd.1:2009(E)

6 © ISO/IEC 2009 – All rights reserved

I, I' Inner state variables for Decimv2

L Filtering function used for Decimv2

T, T' Inner state variables for Decimv2

Y Boolean function used for Decimv2

In addition, a number of other symbols are used for auxiliary local variables in algorithm descriptions. These
symbols occur only within a given function specification and do not have a global meaning. They are thus
described in the function declaration.

7.4.2 Initialization function Init

The Initialization function Init is defined as follows.

INPUT: 80-bit key K, 64-bit initialization vector IV.

OUTPUT: Initial value of the state variable S0
 = (a(0), T(0), b(0), I(0)).

Local variables: counters i, j

a) Initialize the register with the key K and the initialization vector IV.

1) Set aj
 (-256) = Kj for j =0,1,…,79.

2) Set aj
 (-256) = Kj-80 ⊕ IVj-80 for j =80,81,…,143.

3) Set aj
 (-256) = Kj-80 ⊕ IVj-144 ⊕ IVj-128 ⊕ IVj-112 ⊕ IVj-96 for j =144,145,…,159.

4) Set aj
 (-256) = IVj-160 ⊕ IVj-128 ⊕ 1 for j =160,161,…,191.

b) Initialize the buffer and the compression function:

1) Set T (-256) = 000.

2) Set bj
(-256) = 0 for j =0,1,…,31.

3) Set I (-256) = 0.

c) Set S-64 = InitNext192 (S-256, LFSR).

d) Set i = -64.

e) While I(i) < 32 and i<0:

1) Set Si+1
 = InitNext(Si

 , BUFF).

2) Set i=i+1.

f) Set S0 = Si
 .

g) Output S0.

NOTE Steps d), e) and f) of the Decimv2 initialization involve filling the buffer before starting the keystream output. As
the output rate of the compression function varies, the number of steps required to fill the buffer may vary. In
step e), the InitNext(BUFF) function is iterated 64 times at most, which guarantees that the buffer is full with
probability more than 1-2-97. On average, the buffer is full after 24 iterations. If a fixed, constant number of
steps in the Init function is needed for implementation, the test I(i) < 32 in step e) can be removed.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 18033-4:2005/Amd 1:2009
https://standards.iteh.ai/catalog/standards/sist/be96898d-d1ae-497a-a3ad-

659664f04339/iso-iec-18033-4-2005-amd-1-2009

ISO/IEC 18033-4:2005/Amd.1:2009(E)

© ISO/IEC 2009 – All rights reserved 7

Figure 11 — Initialization mechanism.

7.4.3 Initialization Next-state function InitNext

Decimv2 has two modes for the InitNext function: one mode is used during the initialization of the register A
and the second during the initial filling of the buffer.

INPUT: State variable Si
 = (a(i), T(i), b(i), I(i)), mode ∈ {LFSR, BUFF}.

OUTPUT: Next value of the state variable Si+1
 = (a(i+1), T(i+1), b(i+1), I(i+1)).

Local variables: counters j, k, buffers fk, r, c,
 state buffers α(0), ..., α(4), τ(0), ..., τ(4), β(0) , ..., β(4), ι(0) , ..., ι(4).

LFSR mode (execute if mode = LFSR):

a) Update the state of the register A with the following steps:

1) Set α(0) =a (i).

2) For k = 0, 1, 2, 3:

i) Set fk = F(α(k)) and r = L(α(k)) ⊕ fk.

ii) For j =0,1,…,190 set αj
(k+1) = αj+1

(k).

iii) Set α191
(k+1) = r.

3) Set a(i+1) = α(4).

BUFF mode (execute if mode = BUFF):

a) Update the state of the register A with the following steps:

1) Set α(0) =a (i).

2) For k = 0, 1, 2, 3:

i) Set fk = α1
(k) ⊕ F(α(k)) and r = L(α(k)).

ii) For j =0,1,…,190 set αj
(k+1) = αj+1

(k).

iii) Set α191
(k+1) = r.

3) Set a(i+1) = α(4).

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 18033-4:2005/Amd 1:2009
https://standards.iteh.ai/catalog/standards/sist/be96898d-d1ae-497a-a3ad-

659664f04339/iso-iec-18033-4-2005-amd-1-2009

ISO/IEC 18033-4:2005/Amd.1:2009(E)

8 © ISO/IEC 2009 – All rights reserved

b) Set τ(0) = T(i) , β(0) = b(i) , ι(0) = I(i).

c) For k = 0, 1, 2, 3:

1) Update the state of the compression block with the following steps:

i) Set c = fk ⊕ τ 0
(k).

ii) Set τ(k+1) = ABSG(τ(k), fk).

iii) If τ0
(k+1) = 0 , set output = TRUE , otherwise set output = FALSE.

2) Update the state of the buffer by (β(k+1) , ι(k+1)) = B(β(k) , ι(k) , output, c).

d) Set T(i+1) = τ(4).

e) Set b(i+1) = β(4) and I(i+1) = ι(4).

7.4.4 Next-state function Next

INPUT: State variable Si
 = (a(i), T(i), b(i), I(i)).

OUTPUT: Next value of the state variable Si+1
 = (a(i+1), T(i+1), b(i+1), I(i+1)).

Local variables: counters j, k, buffers fk, r, c,
 state buffers α(0), ..., α(4), τ(0), ..., τ(4), β(0) , ..., β(4), ι(0) , ..., ι(4).

a) Update the state of the register A with the following steps:

1) Set α(0) =a (i).

2) For k = 0, 1, 2, 3:

i) Set fk = α1
(k) ⊕ F(α(k)) and r = L(α(k)).

ii) For j = 0, 1, …,190 set αj
(k+1) = αj+1

(k).

iii) Set α191
(k+1) = r.

3) Set a(i+1) = α(4).

b) Set τ(0) = T(i) , β(0) = b(i) , ι(0) = I(i)-1.

c) For j = 0, 1, …, ι(0)-1 , set βj
(0) = bj+1

(i)

d) For k = 0, 1, 2, 3:

1) If ι(0) = 0 , set τ(k+1) = τ(k) , output = TRUE and c = fk , otherwise update the state of the compression
block with the following steps:

i) Set c = fk ⊕ τ 0
(k).

ii) Set τ(k+1) = ABSG(τ(k), fk).

iii) If τ0
(k+1) = 0 , set output = TRUE , otherwise set output = FALSE.

2) Update the state of the buffer by (β(k+1) , ι(k+1)) = B(β(k) , ι(k) , output, c).

e) Set T(i+1) = τ(4) , b(i+1) = β(4) and I(i+1) = ι(4) .

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 18033-4:2005/Amd 1:2009
https://standards.iteh.ai/catalog/standards/sist/be96898d-d1ae-497a-a3ad-

659664f04339/iso-iec-18033-4-2005-amd-1-2009

	ñ‘c_{|<ÐíëŁ€ª"’�ðúMñ?Õð,Gª	
”àšÎÆm×œ⁄‹ÅVå�N¤Õ†¢ê$ƒ¹Aâˆ›ï�r�˚4p0i¾/¿Æ�ú–œR�˘zïÒÛÛ˘%NÌr rŠˇ–?¥'º÷Õ€Œíö´`wu�Ü¢˝ä�ø`Ü)Û×îP��‹	ò‡_¢ÄÊ$$�%

