Paints and varnishes — Corrosion protection of steel structures by protective paint systems —

Part 6:
Laboratory performance test methods
Contents

Foreword .. iv
Introduction .. vi
1 Scope .. vi
2 Normative references .. 1
3 Terms and definitions ... 2
4 General .. 3
 4.1 Relationship between artificial ageing and natural exposure .. 3
 4.2 Additional performance tests ... 3
5 Tests .. 3
 5.1 Test panels ... 3
 5.1.1 Carbon steel .. 3
 5.1.2 Hot dip galvanized steel ... 3
 5.1.3 Thermal-sprayed metallic coatings .. 4
 5.2 Sampling of paints .. 4
 5.3 Number of test panels ... 4
 5.4 Paint systems ... 4
 5.5 Reference system .. 4
 5.6 Test procedures and duration .. 4
6 Paint system assessment ... 6
 6.1 General ... 6
 6.2 Assessment before artificial ageing .. 6
 6.3 Assessment after artificial ageing for the specified time .. 6
7 Test report .. 7
Annex A (normative) Scribe line for ISO 9227 test and ISO 12944-9 cyclic ageing test ... 9
Annex B (normative) Cyclic ageing test .. 11
Bibliography ... 12
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical committee ISO/TC 35, Paints and varnishes, Subcommittee SC 14, Protective paint systems for steel structures.

This second edition cancels and replaces the first edition (ISO 12944-6:1998), which has been technically revised.

The main changes compared to the previous edition are as follows:

— the normative references have been updated;
— the terms and definitions have been revised;
— 4.2 "Additional performance tests" has been revised and the Note deleted;
— 5.1 "Test panels" has been revised;
— 5.4 "Paint systems" has been revised and requirements for maximum film thickness added;
— 5.6 "Test procedures and duration" has been revised and includes a revised Table 1;
— Table 1 “Test procedures for paint systems applied to carbon steel, hot dip galvanized steel or steel with thermal-sprayed metallic coating” has been divided into two separate tables, one containing categories C1 to C5 and one containing categories Im1 to Im3;
— the former Table 2 has been deleted;
— Clause 6 "Paint system assessment" has been revised;
— in 6.2 a new Table 3 “Assessment before artificial ageing” has been included;
— in 6.3 a new Table 4 “Assessment after artificial ageing for the specified time” has been included;
— in Clause 7 “Test report” the following items were added: “photographic documents […]”, "thickness of zinc layer […]", and "thickness of the thermal-sprayed metallic coating [...]";
— Annex A has been revised and Figures A.1 and A.2 have been added;
— a new normative Annex B "Cyclic ageing test" has been added;
— the former Annex B has been deleted;
— a Bibliography has been added;
— the text has been editorially revised.

A list of all parts in the ISO 12944 series can be found on the ISO website.
Introduction

Unprotected steel in the atmosphere, in water and in soil is subject to corrosion that can lead to damage. Therefore, to avoid corrosion damage, steel structures are normally protected to withstand the corrosion stresses to which they will be subjected during the service life required of the structure.

There are different ways of protecting steel structures from corrosion. ISO 12944 (all parts) deals with protection by paint systems and covers, in the various parts, all features that are important in achieving adequate corrosion protection. Additional or other measures are possible but require particular agreement between the interested parties.

In order to ensure effective corrosion protection of steel structures, owners of such structures, planners, consultants, companies carrying out corrosion protection work, inspectors of protective coatings and manufacturers of coating materials need to have at their disposal state-of-the-art information in concise form on corrosion protection by paint systems. It is vital that such information is as complete as possible, unambiguous and easily understandable to avoid difficulties and misunderstandings between the parties concerned with the practical implementation of protection work.

ISO 12944 (all parts) is intended to give this information in the form of a series of instructions. It is written for those who have some technical knowledge. It is also assumed that the user of ISO 12944 (all parts) is familiar with other relevant International Standards, in particular those dealing with surface preparation.

Although ISO 12944 (all parts) does not deal with financial and contractual questions, attention is drawn to the fact that, because of the considerable implications of inadequate corrosion protection, non-compliance with requirements and recommendations given in this document can result in serious financial consequences.

ISO 12944-1 defines the overall scope of ISO 12944. It gives some basic terms and definitions and a general introduction to the other parts of ISO 12944. Furthermore, it includes a general statement on health, safety and environmental protection, and guidelines for using ISO 12944 (all parts) for a given project.

This document provides a way of assessing paint systems by means of laboratory tests in order to be able to select the most suitable.

Cyclic ageing testing according to Annex B is introduced within this document. It is currently used in C5 VH/H and C4 VH. In case of C5 H and C4 VH the test regime including salt spray and condensation test can still be used as alternative to cyclic ageing test. For the future, it is intended to remove salt spray and condensation tests as alternative tests for C5 H and C4 VH.
Paints and varnishes — Corrosion protection of steel structures by protective paint systems —
Part 6:
Laboratory performance test methods

1 Scope
This document specifies laboratory test methods and test conditions for the assessment of paint systems for the corrosion protection of carbon steel structures. The test results are intended to be considered as an aid in the selection of suitable paint systems and not as exact information for determining durability.

This document covers protective paint systems designed for application to uncoated steel, hot dip galvanized steel according to ISO 1461 and steel surfaces with thermal-sprayed metallic coating according to ISO 2063-1 and ISO 2063-2.

This document does not apply to protective paint systems for electroplated or painted steel.

The environments for corrosivity categories C2 to C5 and Im1 to Im3 defined in ISO 12944-2 are considered.

2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1461, Hot dip galvanized coatings on fabricated iron and steel articles — Specifications and test methods

ISO 1513, Paints and varnishes — Examination and preparation of test samples

ISO 2063-1, Thermal spraying — Zinc, aluminium and their alloys — Part 1: Design considerations and quality requirements for corrosion protection systems

ISO 2063-2, Thermal spraying — Zinc, aluminium and their alloys — Part 2: Execution of corrosion protection systems

ISO 2409, Paints and varnishes — Cross-cut test

ISO 2808, Paints and varnishes — Determination of film thickness

ISO 2812-2, Paints and varnishes — Determination of resistance to liquids — Part 2: Water immersion method

ISO 3270, Paints and varnishes and their raw materials — Temperatures and humidities for conditioning and testing

ISO 4624, Paints and varnishes — Pull-off test for adhesion

ISO 4628-2, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and size of defects, and of intensity of uniform changes in appearance — Part 2: Assessment of degree of blistering
ISO 12944-6:2018(E)

ISO 4628-3, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and size of defects, and of intensity of uniform changes in appearance — Part 3: Assessment of degree of rusting

ISO 4628-4, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and size of defects, and of intensity of uniform changes in appearance — Part 4: Assessment of degree of cracking

ISO 4628-5, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and size of defects, and of intensity of uniform changes in appearance — Part 5: Assessment of degree of flaking

ISO 4628-8, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and size of defects, and of intensity of uniform changes in appearance — Part 8: Assessment of degree of delamination and corrosion around a scribe or other artificial defect

ISO 6270-1, Paints and varnishes — Determination of resistance to humidity — Part 1: Condensation (single-sided exposure)

ISO 7384, Corrosion tests in artificial atmosphere — General requirements

ISO 8503-1, Preparation of steel substrates before application of paints and related products — Surface roughness characteristics of blast-cleaned steel substrates — Part 1: Specifications and definitions for ISO surface profile comparators for the assessment of abrasive blast-cleaned surfaces

ISO 8503-2, Preparation of steel substrates before application of paints and related products — Surface roughness characteristics of blast-cleaned steel substrates — Part 2: Method for the grading of surface profile of abrasive blast-cleaned steel — Comparator procedure

ISO 9227, Corrosion tests in artificial atmospheres — Salt spray tests

ISO 12944-1, Paints and varnishes — Corrosion protection of steel structures by protective paint systems — Part 1: General introduction

ISO 12944-2, Paints and varnishes — Corrosion protection of steel structures by protective paint systems — Part 2: Classification of environments

ISO 15528, Paints, varnishes and raw materials for paints and varnishes — Sampling

ISO 19840, Paints and varnishes — Corrosion protection of steel structures by protective paint systems — Measurement of, and acceptance criteria for, the thickness of dry films on rough surfaces

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 12944-1 and the following apply.

ISc and IEC maintain terminological databases for use in standardization at the following addresses:

— IEC Electropedia: available at https://www.electropedia.org/
— ISO Online browsing platform: available at https://www.iso.org/obp

3.1 artificial ageing
procedure designed to accelerate the ageing of a paint system, i.e. to reduce the corrosion-protective efficiency more rapidly than by natural weathering
4 General

4.1 Relationship between artificial ageing and natural exposure

The selection of a paint system for a specific situation should preferably be based on experience from the use of the system in similar cases. The reason is that the durability of a paint system depends on many external factors such as the environment, the design of the structure, the surface preparation, and the application and drying procedures.

The durability is of course also linked to the chemical and physical characteristics of the system, e.g. the type of binder and the dry-film thickness. The influence of these characteristics on the durability can be evaluated by artificial-ageing tests. Of primary interest is resistance to water or moisture, and to salt fog, as an indication of wet adhesion and the barrier properties. The ageing tests and durations specified hereafter have been selected to ensure, with a high probability, that paint systems really do have the characteristics needed for the durability required in the intended application.

However, results from artificial ageing tests shall be used with caution. It shall be clearly understood that artificial ageing will not necessarily have the same effect as natural exposure. Many factors have an influence on the progress of degradation and, in the laboratory it is not possible to accelerate all of them in the proper way. It is therefore difficult to make a reliable ranking of paint systems of very different compositions from artificial ageing tests in the laboratory. This can sometimes lead to efficient protective paint systems being rejected because they cannot pass these tests. It is recommended that natural-exposure trials always be undertaken so that, in the long term, such anomalies can be resolved.

4.2 Additional performance tests

Additional tests are recommended if:

a) more information is needed on corrosion protection behaviour;
b) chemical resistance is required;
c) mechanical resistance is required;
d) cathodic protection is applied.

Additional test methods may be agreed between the interested parties.

5 Tests

5.1 Test panels

5.1.1 Carbon steel

The test panels shall be made of the same type of steel as used in practice, unless otherwise agreed. The minimum panel size shall be 150 mm × 75 mm. The panel thickness will depend on the test, but shall be 3 mm at least. Unless otherwise agreed, the panel surface shall be prepared by blast-cleaning to minimum surface preparation grade Sa 2½ as defined in ISO 8501-1. The surface roughness (profile) shall correspond to “medium (G)” as defined in ISO 8503-1. It can be checked by using a comparator as defined in ISO 8503-2. The panels shall not be curved. In all other respects, test panels shall comply with ISO 7384.

5.1.2 Hot dip galvanized steel

The test panels shall be made of hot dip galvanized steel in accordance with ISO 1461, unless otherwise agreed. Size and thickness shall be as for carbon steel substrates. Surface preparation shall be as agreed between the interested parties. Suitable surface preparation methods are given in ISO 12944-4 and in...

5.1.3 Thermal-sprayed metallic coatings

The test panels shall be made of steel with a thermal-sprayed metallic coating in accordance with ISO 2063-1 and ISO 2063-2, unless otherwise agreed. Size and thickness shall be as for steel substrates. Surface preparation shall be as agreed between the interested parties. Suitable surface preparation methods are given in ISO 12944-4 and in ISO 12944-5:2018, Annex B. Usually no further surface preparation of the thermal sprayed metal coating is necessary. The thickness of the thermal-sprayed metallic coating shall be determined and documented in the test report.

5.2 Sampling of paints

Take a representative sample of the product to be tested (or of each product in the case of a multi-coat system), as described in ISO 15528. Examine and prepare each sample for testing, as described in ISO 1513.

5.3 Number of test panels

Unless otherwise agreed, prepare three panels for each test.

5.4 Paint systems

Preferably apply the paint to the panel by spraying. The paint shall be applied in accordance with the paint manufacturer’s specifications. Each coat shall be homogeneous in thickness and appearance and free from runs, sags, misses, pinholes, wrinkling, gloss variations, cissing, particle inclusions, dry overspray and blisters. The method and procedure for checking the thicknesses of dry films on rough surfaces (blast cleaned steel and thermal-sprayed metallic coating) shall be in accordance with ISO 19840, and hot dip galvanized surfaces in accordance with ISO 2808, unless otherwise agreed between the interested parties. Acceptance criteria, as stated in ISO 19840 shall apply unless otherwise agreed.

The maximum thickness of each coat on each panel shall be

- less than 1,5 × the nominal dry film thickness (NDFT) if the NDFT is ≤60 μm;
- less than 1,25 × the nominal dry film thickness (NDFT) if the NDFT is >60 μm.

Unless otherwise agreed, condition the coated test panels for two weeks in standard climate variant according to ISO 3270 of (23 ± 2) °C and (50 ± 5) % before testing.

Appropriate protection shall be applied to the edges and the backs of the panels.

Annex A defines the procedure that shall be followed to produce the scribe line for the ISO 9227 test and for the cyclic ageing test according to ISO 12944-9. Annex B defines the procedure that shall be followed for the cyclic ageing test.

5.5 Reference system

It is recommended that a paint system which has been in successful use for years on site, and whose performance as indicated by laboratory testing is well known, is used as a reference system. This system shall be as similar as possible in composition and/or generic type and thickness to the paint system being tested. Examples of suitable paint systems are given in ISO 12944-5.

5.6 Test procedures and duration

The test procedures and duration shall be as specified in Table 1 and Table 2.

Tests according to Table 1 shall be performed with separate sets of test panels.
In cases when both test regimes' durations are defined either regime may be used.

Table 1 — Test procedures for paint systems applied to carbon steel, hot dip galvanized steel or steel with thermal-sprayed metallic coating for atmospheric corrosivity categories

<table>
<thead>
<tr>
<th>Corrosivity category as defined in ISO 12944-2</th>
<th>Test regime 1</th>
<th>Test regime 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Durability ranges according to ISO 12944-1</td>
<td>ISO 2812-2 (water immersion)</td>
</tr>
<tr>
<td>C2</td>
<td>low</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>very high</td>
<td>—</td>
</tr>
<tr>
<td>C3</td>
<td>low</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>very high</td>
<td>—</td>
</tr>
<tr>
<td>C4</td>
<td>low</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>very high</td>
<td>—</td>
</tr>
<tr>
<td>C5</td>
<td>low</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>very high</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 2 — Test procedures for paint systems applied to carbon steel, hot dip galvanized steel or steel with thermal-sprayed metallic coating for immersion categories

<table>
<thead>
<tr>
<th>Immersion category as defined in ISO 12944-2</th>
<th>Durability ranges according to ISO 12944-1</th>
<th>ISO 2812-2 (water immersion)</th>
<th>ISO 6270-1 a (water condensation)</th>
<th>ISO 9227 a (neutral salt spray)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Im1</td>
<td>high</td>
<td>3 000</td>
<td>1 440</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>very high</td>
<td>4 000</td>
<td>2 160</td>
<td>—</td>
</tr>
<tr>
<td>Im2</td>
<td>high</td>
<td>3 000</td>
<td>—</td>
<td>1 440</td>
</tr>
<tr>
<td></td>
<td>very high</td>
<td>4 000</td>
<td>—</td>
<td>2 160</td>
</tr>
<tr>
<td>Im3</td>
<td>high</td>
<td>3 000</td>
<td>—</td>
<td>1 440</td>
</tr>
<tr>
<td></td>
<td>very high</td>
<td>4 000</td>
<td>—</td>
<td>2 160</td>
</tr>
</tbody>
</table>

*a Only relevant if systems are partially or temporarily immersed/buried.

An interruption of greater than 72 h is not permitted, and the total duration of interruptions shall not exceed 10% of the total test time. The total duration of test interruptions shall not be considered part of the elapsed test time.

Systems tested according to C5 vh are also suitable for lower corrosivity categories and durabilities.

For the assessment of paint systems for suitability for use in the various categories for immersion in water and burial in soil as defined in ISO 12944-2:2017, Table 2, use the following materials: