INTERNATIONAL STANDARD

First edition 2012-12-01

Monolithic (unshaped) refractory products —

Part 6: Measurement of physical properties

Produits réfractaires monolithiques (non façonnés) — Partie 6: Détermination des propriétés physiques **iTeh STANDARD PREVIEW**

(standards.iteh.ai)

<u>ISO 1927-6:2012</u> https://standards.iteh.ai/catalog/standards/sist/64337a0c-4051-49fa-8b8fe0b415ee6c87/iso-1927-6-2012

Reference number ISO 1927-6:2012(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 1927-6:2012</u> https://standards.iteh.ai/catalog/standards/sist/64337a0c-4051-49fa-8b8fe0b415ee6c87/iso-1927-6-2012

COPYRIGHT PROTECTED DOCUMENT

© ISO 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Contents

Page

Forewordiv		
1	Scope	. 1
2	Normative references	. 1
3 3.1 3.2 3.3 3.4 3.5	Determination of geometric bulk density Principle Test pieces Apparatus Procedure Calculation and expression of test results	. 1 . 2 . 2 . 2 . 3
4 4.1 4.2 4.3 4.4	Determination of density and porosity Principle Test pieces Procedure Calculation	. 3 . 3 . 3 . 3
5 5.1 5.2 5.3 5.4	Determination of cold modulus of rupture Principle Test pieces Apparatus and procedure Test results	. 3 . 4 . 4 . 4
6 6.1 6.2 6.3 6.4 6.5	Determination of cold crushing strength RD PREVIEW Principle Test pieces Apparatus Procedure Calculation and expression of results and ards/sist/64337a0c-4051-49fa-8b8f.	. 4 . 4 . 5 . 5 . 7
7 7.1 7.2 7.3 7.4	Determination of permanent linear change. Principle. Apparatus. Procedure. Calculation	. 7 . 7 . 8 . 8
8 8.1 8.2 8.3	Determination of modulus of rupture at elevated temperatures Principle Apparatus and procedure Calculation and expression of results	. 9 . 9 . 9 . 9
9 9.1 9.2 9.3 9.4	Determination of refractoriness under load and creep in compression Principle Test pieces Procedure Calculation and expression of test results	. 9 . 9 . 9 . 9 10
10	Test report	10
Bibliog	graphy	11

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 1927-6 was prepared by Technical Committee ISO/TC 33, Refractories.

ISO 1927 consists of the following parts, under the general title Monolithic (unshaped) refractory products:

- Part 1: Introduction and classification
- Part 2: Sampling for testing
- Part 3: Characterization as received STANDARD PREVIEW
- Part 4: Determination of consistency of castables ards.iteh.ai)
- Part 5: Preparation and treatment of test pieces: 0 1927-6:2012
- Part 6: Measurement of physical properties e00415ee6c87/iso-1927-6-2012
- Part 7: Tests on pre-formed shapes
- Part 8: Determination of complementary properties

Monolithic (unshaped) refractory products -

Part 6: Measurement of physical properties

1 Scope

This part of ISO 1927 specifies methods for the determination of properties of unshaped materials from test pieces prepared and stored according to ISO 1927-5.

The methods are applicable to dense and insulating castables and to ramming materials (including plastics) as defined in ISO 1927-1 before and after firing.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1893, Refractory products S Determination of refractoriness under load — Differential method with rising temperature (standards.iteh.ai)

ISO 1927-5, Monolithic (unshaped) refractory products — Part 5: Preparation and treatment of test pieces

ISO 3187 Refractory products — Determination of creep in compression https://standards.iteh.ai/catalog/standards/sist/64337a0c-4051-49fa-8b8f-

ISO 5013 Refractory products — Determination of modulus of rupture at elevated temperatures

ISO 5014: Dense and insulating shaped refractory products — Determination of modulus of rupture at ambient temperature

ISO 5017, Dense shaped refractory products — Determination of bulk density, apparent porosity and true porosity

ISO 5018, Refractory materials — Determination of true density

ISO 8895, Shaped insulating refractory products — Determination of cold crushing strength

ISO 10059-1, Dense, shaped refractory products — Determination of cold compressive strength — Part 1: Referee test without packing

ISO 10059-2, Dense, shaped refractory products — Determination of cold compressive strength — Part 2: Test with packing

3 Determination of geometric bulk density

3.1 Principle

This determination is carried out according to a geometric method. It can be applied to green, dried or fired test pieces. The condition of the test pieces shall be stated in the test report.

3.2 Test pieces

The test piece shape shall be one of the following:

- shape A: Length: 230 mm; width: 114 mm; thickness: 64 mm,
- shape B: Length: 230 mm; width: 64 mm; thickness: 54 mm, or
- shape C: Length: 230 mm; width: 64 mm; thickness: 64 mm, or
- shape D: Length: 160 mm; width: 40 mm; thickness: 40 mm.

The test pieces shall be prepared and stored according to the relevant sections of ISO 1927-5.

NOTE For ramming materials taphole and dry mixes, as an alternative to these shapes, cylindrical test pieces, of diameter 50 mm \pm 1 mm and height 50 mm \pm 1 mm can be used.

Three test pieces produced at the same time shall be tested.

3.3 Apparatus

- **3.3.1** Balance, capable of measuring mass to the accuracy specified in 3.4.1.
- **3.3.2** Callipers, capable of measuring to the accuracy specified in 3.4.2.

3.4 Procedure iTeh STANDARD PREVIEW

3.4.1 Determination of the mass *m* of the test piece

For the test pieces of shape A, B and C, determine the mass to the nearest 1 g. https://standards.iteh.ai/catalog/standards/sist/64337a0c-4051-49fa-8b8f-For 50 mm cylinders, measure the mass to an accuracy of ±-0,0 g.6-2012

3.4.2 Determination of the volume, *V*, of the test piece

Determine the volume of the test piece by carrying out four measurements of each dimension along the centreline of each face:

- for rectangular test pieces, on length, width and thickness;
- for cylindrical test pieces, on height and diameter.

All measurements shall be made to an accuracy of \pm 0,1 mm.

3.4.3 Calculation of geometric bulk density

The geometric bulk density, ρ_{g} , is given by:

$$\rho_{\rm g} = \frac{m}{V}$$

(1)

where

- *m* is the mass of the test piece, in grams;
- *V* is the volume of the test piece obtained by calculation using the mean dimensions given in cubic centimetres.

3.5 Calculation and expression of test results

Calculate the geometric bulk density either in g/cm³ to the nearest 0,01 g/cm³, or in kg/m³ to three significant figures.

Report the test result as the mean of all determinations, including the mean value and all individual results in the test report.

4 Determination of density and porosity

4.1 Principle

This determination is applied to fired test pieces.

4.2 Test pieces

The test pieces shall be shapes A, B, C or D prepared, stored and fired according to the relevant sections of ISO 1927-5 (see 3.2).

NOTE For ramming materials, taphole and dry mixes, cylindrical test pieces can be used as an alternative to shapes A, B, C or D (see 3.2).

4.3 Procedure

4.3.1 Determination of bulk density ANDARD PREVIEW

4.3.1.1 Dense materials (standards.iteh.ai)

Determine the bulk density and the apparent porosity, and calculate the total porosity in accordance with ISO 5017.

NOTE In the presence of glazing, the firing skin should be removed. e0b415ee6c87/iso-1927-6-2012

4.3.1.2 Insulating materials

Determine the bulk density in accordance with Clause 3 since it is not possible to use the water absorption method with these materials.

4.3.2 Determination of true density

Determine the true density in accordance with ISO 5018 using a liquid which will not react with the material.

4.4 Calculation

The individual values and the mean value of the properties shall be given as test results.

Calculate the bulk density and the true density in g/cm³ to the nearest 0,01 g/cm³, or in kg/m³ to three significant figures.

Calculate and report the open and total porosity in %, rounded to the nearest 0,1 %.

5 Determination of cold modulus of rupture

5.1 Principle

This determination is applied to dried or fired test pieces (shapes A, B, C or D).

5.2 Test pieces

Use test pieces as specified in 3.2 and with the following tolerances:

- width and height \pm 0,5 mm;
- parallelism of cross-section sides \pm 0,2 mm;
- parallelism of top and bottom sides \pm 0,3 mm;
- distance between supports 180 mm \pm 1 mm; or 100 mm \pm 0.5 mm for shape D.
- radius of curvature at the load bearing edges;
- bearing edges 15 mm \pm 0,5 mm.

Dry the test pieces at 110 °C \pm 5 °C to constant mass and cool to room temperature, taking care to avoid moisture pick-up. For unfired test pieces, the test shall be carried out immediately after drying and cooling, and for fired pieces, within three days.

5.3 Apparatus and procedure

Use the apparatus and procedure as specified in ISO 5014 with the following rates of increase of stress:

- dense products 0,15 MPa/s \pm 0,015 MPa/s;
- insulating products 0,05 MPa/s 0,005 MPa/s. DARD PREVIEW

Apply the stress perpendicular to the direction of fabrication.iteh.ai)

5.4 Test results

<u>ISO 1927-6:2012</u>

Calculate the cold modulus of hupfure in MPa rounded to the nearest 0,20 MPa. 49fa-8b8fe0b415ee6c87/iso-1927-6-2012

6 Determination of cold crushing strength

6.1 Principle

This determination is applied to dried or fired test pieces.

6.2 Test pieces

6.2.1 General

The preparation, size and dimensions of the test pieces shall be agreed between the parties concerned and noted in the test report.

NOTE The determination of cold crushing strength can be carried out on test pieces of different sizes. The results obtained from these test pieces can differ.

Dry the test pieces at 110 °C \pm 5 °C to constant mass and cool to room temperature, taking care to avoid moisture pick-up. For unfired test pieces, the test shall be carried out immediately after drying and cooling, and for fired pieces, within three days.

Apply the stress perpendicular to the direction of fabrication except for the cylindrical test pieces.

6.2.2 Prismatic test pieces

Use broken halves produced from the cold modulus of rupture test (see Clause 5), without sawing or grinding the test pieces.

NOTE The use of this size is more suitable for quality control applications.

6.2.3 Cubic test pieces

Prepare three test pieces from shape C by sawing cubes of 64 mm \pm 0,5 mm in edge length.

For testing after drying, the test pieces shall be sawn and trued after curing and before drying at 110 °C.

NOTE 1 If sawing could damage the test piece, then sawing should be performed after drying at 110 °C. The test piece should then be dried again immediately after sawing.

For testing after firing, the test pieces shall be sawn and trued after firing.

NOTE 2 Cubes should not be sawn from broken halves obtained from the cold modulus of rupture test.

6.2.4 Cylindrical test pieces for ramming materials, taphole and dry mixes

Prepare three test pieces of height 50 mm \pm 0,5 mm and 50 mm \pm 0,5 mm in diameter, from shapes A, B or C, by sawing, coring and truing or directly produced by ramming.

6.3 Apparatus iTeh STANDARD PREVIEW

Use the apparatus specified in ISO 10059-1 or ISO 10059-2 for dense unshaped materials and as specified in ISO 8895 for insulating unshaped materials.

6.4 Procedure https://standards.iteh.ai/catalog/standards/sist/64337a0c-4051-49fa-8b8fe0b415ee6c87/iso-1927-6-2012

6.4.1 Dense materials

For tests utilizing broken halves (see 6.2.2), place the test pieces in the ancillary adapter (see Figure 1) so that the 64 mm edge (shapes A and C) the 54 mm edge (shape B) or the 40 mm edge (shape D) is vertical.

Place the 114 mm edge (shape A), or the 64 mm edges (shapes B and C) central to, and flush with the 120 mm edge of the lower plate. The free edges of the press plate shall be symmetrical (shape D) (see Figure 1).

For tests with cubic or cylindrical test pieces, take care that the loading surface is prepared according to the procedure described in 6.2.3 or 6.2.4.

For both cases, apply the stress smoothly and continuously at a rate of 1,0 MPa/s \pm 0,1 MPa/s until the test piece fails.

Record the maximum load indicated.