# INTERNATIONAL STANDARD

ISO 15500-4

Second edition 2012-04-15

## Road vehicles — Compressed natural gas (CNG) fuel system components —

Part 4:

Manual valve

Véhicules routiers — Composants des systèmes de combustible gaz naturel comprimé (GNC) —

naturel comprimé (GNC) —

iTeh ST Partie 4: Valve manuelle EVIEW

(standards.iteh.ai)



# iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 15500-4:2012 https://standards.iteh.ai/catalog/standards/sist/bba9a071-8c69-451d-8724-527fce213e8b/iso-15500-4-2012



#### COPYRIGHT PROTECTED DOCUMENT

© ISO 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland

#### **Foreword**

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 15500-4 was prepared by Technical Committee ISO/TC 22, Road vehicles, Subcommittee SC 25, Vehicles using gaseous fuels.

This second edition cancels and replaces the first edition (ISO 15500-4:2001), which has been technically revised.

ISO 15500 consists of the following parts, under the general title *Road vehicles* — *Compressed natural gas* (CNG) fuel system components:

- Part 1: General requirements and definitions
- Part 2: Performance and general test methods.iteh.ai)
- Part 3: Check valve <u>ISO 15500-4:2012</u>
  - https://standards.iteh.ai/catalog/standards/sist/bba9a071-8c69-451d-8724-
- Part 4: Manual valve 527fce213e8b/iso-15500-4-2012
- Part 5: Manual cylinder valve
- Part 6: Automatic valve
- Part 7: Gas injector
- Part 8: Pressure indicator
- Part 9: Pressure regulator
- Part 10: Gas-flow adjuster
- Part 11: Gas/air mixer
- Part 12: Pressure relief valve (PRV)
- Part 13: Pressure relief device (PRD)
- Part 14: Excess flow valve
- Part 15: Gas-tight housing and ventilation hose
- Part 16: Rigid fuel line in stainless steel
- Part 17: Flexible fuel line
- Part 18: Filter
- Part 19: Fittings

#### ISO 15500-4:2012(E)

Part 20: Rigid fuel line in material other than stainless steel

# iTeh STANDARD PREVIEW (standards.iteh.ai)

#### Introduction

For the purposes of this part of ISO 15500, all fuel system components in contact with natural gas have been considered suitable for natural gas as defined in ISO 15403. However, it is recognized that miscellaneous components not specifically covered herein can be examined to meet the criteria of this part of ISO 15500 and tested according to the appropriate functional tests.

All references to pressure in this part of ISO 15500 are considered to be gauge pressures unless otherwise specified.

This part of ISO 15500 is based on a service pressure for natural gas used as fuel of 20 MPa [200 bar<sup>1)</sup>] settled at 15 °C. Other service pressures can be accommodated by adjusting the pressure by the appropriate factor (ratio). For example, a 25 MPa (250 bar) service pressure system will require pressures to be multiplied by 1,25.

## iTeh STANDARD PREVIEW (standards.iteh.ai)

<sup>1) 1</sup> bar =  $0.1 \text{ MPa} = 10^5 \text{ Pa} \text{ 1 MPa} = 1 \text{ N/mm}^2$ .

# iTeh STANDARD PREVIEW (standards.iteh.ai)

### Road vehicles — Compressed natural gas (CNG) fuel system components —

#### Part 4:

#### Manual valve

#### 1 Scope

This part of ISO 15500 specifies tests and requirements for the manual valve, a compressed natural gas (CNG) fuel system component intended for use on the types of motor vehicles defined in ISO 3833.

This part of ISO 15500 is applicable to vehicles (mono-fuel, bi-fuel or dual-fuel applications) using natural gas in accordance with ISO 15403.

It is not applicable to the following:

- a) liquefied natural gas (LNG) fuel system components located upstream of, and including, the vaporizer;
- b) fuel containers;
- c) stationary gas engines, eh STANDARD PREVIEW
- d) container-mounting hardware (standards.iteh.ai)
- e) electronic fuel management;

ISO 15500-4:2012

f) refuelling receptatives/standards.iteh.ai/catalog/standards/sist/bba9a071-8c69-451d-8724-527fce213e8b/iso-15500-4-2012

#### 2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 15500-1:2000, Road vehicles — Compressed natural gas (CNG) fuel system components — Part 1: General requirements and definitions

ISO 15500-2, Road vehicles — Compressed natural gas (CNG) fuel system components — Part 2: Performance and general test methods

#### 3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 15500-1 apply.

#### 4 Marking

Marking of the component shall provide sufficient information to allow the following to be traced:

- a) the manufacturer's or agent's name, trademark or symbol;
- b) the model designation (part number);
- c) the working pressure or working pressure and temperature range.

#### ISO 15500-4:2012(E)

The following additional markings are recommended:

- the direction of flow (when necessary for correct installation);
- the type of fuel;
- electrical ratings (if applicable);
- the symbol of the certification agency;
- the type approval number;
- the serial number or date code;
- reference to this part of ISO 15500.

NOTE This information can be provided by a suitable identification code on at least one part of the component when it consists of more than one part.

#### 5 Construction and assembly

- **5.1** The manual valve shall comply with the applicable provisions of ISO 15500-1 and ISO 15500-2, and with the tests specified in Clause 6 of this part of ISO 15500.
- **5.2** Manual valve handles, when provided, shall be securely attached to the valve spindle.

en S I A l

**5.3** A manual valve with a 90° rotation from "on" to "off" position shall be provided with rigidly secured stops to limit rotation. The valve handle shall be perpendicular to the direction of flow in the "off" position.

NDAKD

- **5.4** A manual valve may be used as a service valve. https://standards.iteh.avcatalog/standards/sist/bba9a071-8c69-451d-8724-
- 527fce213e8b/iso-15500-4-2012

  5.5 Valves having a 90° rotation (quarter turn) from "on" to "off" positions shall have the handles perpendicular to the direction of flow at the valve inlet when in the "off" position.
- **5.6** Valves having more than a 90° rotation shall move to the "off" position when rotated clockwise.

#### 6 Tests

#### 6.1 Applicability

The tests required to be carried out are indicated in Table 1.

Table 1 — Applicable tests

| Test                            | Applicable | Test procedure as required by ISO 15500-2 | Specific test requirements of this part of ISO 15500 |
|---------------------------------|------------|-------------------------------------------|------------------------------------------------------|
| Hydrostatic strength            | X          | X                                         | X (see 6.2)                                          |
| Leakage                         | X          | X                                         | X (see 6.3)                                          |
| Excess torque resistance        | X          | X                                         |                                                      |
| Bending moment                  | X          | X                                         |                                                      |
| Continued operation             | X          | X                                         | X (see 6.4)                                          |
| Corrosion resistance            | X          | X                                         |                                                      |
| Oxygen ageing                   | X          | X                                         |                                                      |
| Electrical over-voltages        |            |                                           |                                                      |
| Non-metallic material immersion | X          | X                                         |                                                      |
| Vibration resistance            | X          | X                                         |                                                      |
| Brass material compatibility    | X          | X                                         |                                                      |

#### 6.2 Hydrostatic strength

Test the manual valve according to the procedure for testing hydrostatic strength specified in ISO 15500-2. The test pressure shall be 2,5 times the working pressure.

#### 6.3 Leakage

iTeh STANDARD PREVIEW

Test the manual valve at the temperatures and pressures given in Table 2.

https://standards.iteil.a/catalogstandards/sis/babaya0/11-809-431d-6/24-

| 52/fce213e8b/iso-<br>Temperature<br>°C | Factor × working pressure (WP) |             |  |
|----------------------------------------|--------------------------------|-------------|--|
|                                        | First test                     | Second test |  |
| −40 or −20                             | 0,75 × WP                      | 0,025 × WP  |  |
| 20                                     | 0,025 × WP                     | 1,5 × WP    |  |
| 85 or 120                              | 0,05 × WP                      |             |  |

#### 6.4 Continued operation

- **6.4.1** Test the manual valve in accordance with the procedure for testing continued operation given in ISO 15500-2, for 10 000 cycles, but lower the downstream pressure of the test fixture to less than 0,5 MPa (5 bar), and perform the leakage test in accordance with 6.3 of this part of ISO 15500.
- **6.4.2** Following cycling and leakage testing, the manual valve shall be capable of completely opening and closing when a torque no greater than the appropriate one specified in Table 3 is applied to the valve handle in a direction that opens it completely and in the opposite direction. The test shall be conducted with the valve pressurized at working pressure.
- **6.4.3** Conduct the test at the appropriate maximum temperature according to 4.4 of ISO 15500-1:2000, then repeat the test at a temperature of -40 °C or -20 °C, as applicable, and with the appropriate maximum torque specified in Table 3 below.