INTERNATIONAL STANDARD

Second edition 2012-04-15

Road vehicles — Compressed natural gas (CNG) fuel system components —

Part 3: Check valve

Véhicules routiers — Composants des systèmes de combustible gaz naturel comprimé (GNC) iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 15500-3:2012 https://standards.iteh.ai/catalog/standards/sist/f27dc7ca-a9ed-49b8-8dba-67d59c9b5e5a/iso-15500-3-2012

Reference number ISO 15500-3:2012(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 15500-3:2012 https://standards.iteh.ai/catalog/standards/sist/f27dc7ca-a9ed-49b8-8dba-67d59c9b5e5a/iso-15500-3-2012

COPYRIGHT PROTECTED DOCUMENT

© ISO 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 15500-3 was prepared by Technical Committee ISO/TC 22, *Road vehicles*, Subcommittee SC 25, *Vehicles using gaseous fuels*.

This second edition cancels and replaces the first edition (ISO 15500-3:2001), which has been technically revised.

ISO 15500 consists of the following parts, under the general title *Road vehicles* — *Compressed natural gas (CNG) fuel system components*:

- Part 1: General requirements and definitions
- Part 2: Performance and general test methods
- Ũ
 - Part 3: Check valve ISO 15500-3:2012
- https://standards.iteh.ai/catalog/standards/sist/f27dc7ca-a9ed-49b8-8dba Part 4: Manual valve
 67d59c9b5e5a/iso-15500-3-2012
- Part 5: Manual cylinder valve
- Part 6: Automatic valve
- Part 7: Gas injector
- Part 8: Pressure indicator
- Part 9: Pressure regulator
- Part 10: Gas-flow adjuster
- Part 11: Gas/air mixer
- Part 12: Pressure relief valve (PRV)
- Part 13: Pressure relief device (PRD)
- Part 14: Excess flow valve
- Part 15: Gas-tight housing and ventilation hose
- Part 16: Rigid fuel line in stainless steel
- Part 17: Flexible fuel line
- Part 18: Filter
- Part 19: Fittings

— Part 20: Rigid fuel line in material other than stainless steel

iTeh STANDARD PREVIEW (standards.iteh.ai)

Introduction

For the purposes of this part of ISO 15500, all fuel system components in contact with natural gas have been considered suitable for natural gas as defined in ISO 15403. However, it is recognized that miscellaneous components not specifically covered herein can be examined to meet the criteria of this part of ISO 15500 and tested according to the appropriate functional tests.

All references to pressure in this part of ISO 15500 are considered to be gauge pressures unless otherwise specified.

This part of ISO 15500 is based on a service pressure for natural gas used as fuel of 20 MPa [200 bar¹] settled at 15 °C. Other service pressures can be accommodated by adjusting the pressure by the appropriate factor (ratio). For example, a 25 MPa (250 bar) service pressure system will require pressures to be multiplied by 1,25.

iTeh STANDARD PREVIEW (standards.iteh.ai)

^{1) 1} bar = 0,1 MPa = 10⁵ Pa 1 MPa = 1 N/mm².

iTeh STANDARD PREVIEW (standards.iteh.ai)

Road vehicles — Compressed natural gas (CNG) fuel system components —

Part 3: Check valve

1 Scope

This part of ISO 15500 specifies tests and requirements for the check valve, a compressed natural gas (CNG) fuel system component intended for use on the types of motor vehicles defined in ISO 3833.

This part of ISO 15500 is applicable to vehicles (mono-fuel, bi-fuel or dual-fuel applications) using natural gas in accordance with ISO 15403 (all parts). It is not applicable to the following:

- a) liquefied natural gas (LNG) fuel system components located upstream of, and including, the vaporizer;
- b) fuel containers;
- c) stationary gas engines;
- d) container-mounting hardware, TANDARD PREVIEW
- e) electronic fuel management; (standards.iteh.ai)
- f) refuelling receptacles.

https://standards.iteh.ai/catalog/standards/sist/f27dc7ca-a9ed-49b8-8dba-

67d59c9b5e5a/iso-15500-3-2012

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 15500-1, Road vehicles — Compressed natural gas (CNG) fuel system components — Part 1: General requirements and definitions

ISO 15500-2, Road vehicles — Compressed natural gas (CNG) fuel system components — Part 2: Performance and general test methods

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 15500-1 apply.

4 Marking

Marking of the component shall provide sufficient information to allow the following to be traced:

- a) the manufacturer's or agent's name, trademark or symbol;
- b) the model designation (part number);
- c) the working pressure or working pressure and temperature range.

The following additional markings are recommended:

- the direction of flow (when necessary for correct installation);
- the type of fuel;
- electrical ratings (if applicable);
- the symbol of the certification agency;
- the type approval number;
- the serial number or date code;
- reference to this part of ISO 15500.

NOTE This information can be provided by a suitable identification code on at least one part of the component when it consists of more than one part.

5 Construction and assembly

The check valve shall comply with the applicable provisions of ISO 15500-1 and ISO 15500-2, and with the tests specified in Clause 6 of this part of ISO 15500.

6 Tests

iTeh STANDARD PREVIEW

6.1 Applicability

(standards.iteh.ai)

The tests required to be carried out are indicated in Table 1.

ISO 15500-3:2012

https://standardraibie.ad/standards/sist/27dc7ca-a9ed-49b8-8dba-

Test	Applicable	Test procedure as required by ISO 15500-2	Specific test requirements of this part of ISO 15500
Hydrostatic strength	Х	X	X (see 6.2)
Leakage	Х	X	X (see 6.3)
Excess torque resistance	Xa	Х	
Bending moment	Х	Х	
Continued operation	Х	Х	X (see 6.4)
Corrosion resistance	Х	X	
Oxygen ageing	Х	Х	
Electrical over-voltages			
Non-metallic material immersion	Х	Х	
Vibration resistance	Х	Х	
Brass material compatibility	Х	Х	
^a Not applicable for check valves built in	to other components.		

6.2 Hydrostatic strength

Test the check valve according to the procedure for testing hydrostatic strength specified in ISO 15500-2. The test pressure shall be 2,5 times the working pressure.

6.3 Leakage

Test the check valve at the temperatures and pressures given in Table 2.

Temperature °C	Pressure Factor × working pressure (WP)		
	First test	Second test	
-40 or -20	0,75 × WP	$0,025 \times WP$	
20	0,025 × WP	- 1,5 × WP	
85 or 120	0,05 × WP		

Table 2 — Test temperatures and pressures

6.4 Continued operation

The check valve shall be able to withstand 20 000 cycles of operation and 24 h of chatter flow when tested according to the following procedure.

- a) Connect the check valve to a test fixture and apply a pressure equal to the working pressure to the check valve's inlet, then vent pressure from its outlet. Lower the pressure on the check valve's outlet side to between 0 and a maximum of 0,5 times the working pressure prior to the next cycle.
- b) Following 20 000 cycles of operation, subject the check valve to 24 h of chatter flow at a flow rate that causes the most chatter. After this test, the check valve shall comply with the leakage test according to 6.3.

Failure in any sense during the procedure shall constitute a failure of the check valve. All parts shall remain in position and function properly after this test. DARD PREVIEW

Following this test, the check valve shall comply with the hydrostatic strength test according to 6.2 of this part of ISO 15500.