INTERNATIONAL STANDARD

Second edition 2011-04-15

Petroleum products — Determination of sulfur content of automotive fuels — Wavelength-dispersive X-ray fluorescence spectrometry

Produits pétroliers — Détermination de la teneur en soufre des carburants pour automobiles — Spectrométrie de fluorescence de iTeh STrayons X dispersive en longueur d'onde

(standards.iteh.ai)

<u>ISO 20884:2011</u> https://standards.iteh.ai/catalog/standards/sist/23fa1c49-c239-4450-8f6b-2847c0493034/iso-20884-2011

Reference number ISO 20884:2011(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 20884:2011</u> https://standards.iteh.ai/catalog/standards/sist/23fa1c49-c239-4450-8f6b-2847c0493034/iso-20884-2011

COPYRIGHT PROTECTED DOCUMENT

© ISO 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents

Page

Fore	eword	
1	Scope	1
2	Normative references	1
3	Principle	1
4	Reagents	2
5	Apparatus	2
6	Sampling	
7	Calibration solutions	3
8	Settings	4
9	Calibration	
10	Procedure	5
11	Expression of results	6
12	Precision iTeh STANDARD PREVIEW	6
13	Test report	7
Anne	ex A (informative) Interferences and matrix effects	8
	iography <u>ISO 20884:2011</u> https://standards.iteh.ai/catalog/standards/sist/23fa1c49-c239-4450-8f6b-	
	2847c0493034/iso-20884-2011	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 20884 was prepared by Technical Committee ISO/TC 28, Petroleum products and lubricants.

This second edition cancels and replaces the first edition (ISO 20884:2004), which has been technically revised.

(standards.iteh.ai)

<u>ISO 20884:2011</u> https://standards.iteh.ai/catalog/standards/sist/23fa1c49-c239-4450-8f6b-2847c0493034/iso-20884-2011

Petroleum products — Determination of sulfur content of automotive fuels — Wavelength-dispersive X-ray fluorescence spectrometry

WARNING — The use of this International Standard may involve hazardous materials, operations and equipment. This International Standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this International Standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

1 Scope

This International Standard specifies a wavelength-dispersive X-ray fluorescence (WDXRF) test method for the determination of the sulfur content of liquid, homogeneous automotive fuels from 5 mg/kg to 500 mg/kg, which have a maximum oxygen content of 3,7 % (m/m). This product range covers diesel fuels containing up to about 10 % (V/V) fatty acid methyl esters (FAME) and motor gasolines containing up to about 10 % (V/V) ethanol.

NOTE 1 Sulfur contents higher than 500 mg/kg can be determined after sample dilution. However, the precision was not established for diluted samples.

Products with higher oxygen content show significant matrix effects, e.g. FAME used as biodiesel. Nevertheless, FAME may be analysed when the corresponding procedures are followed (see 4.3 and 7.1).

Other products may be analysed with this test method. However, precision data for products other than those mentioned have not been established for this International Standard.

NOTE 2 For the purposes of this International Standard, the terms "(m/m)" and "(V/V)" are used to represent the mass fraction and the volume fraction of a material respectively.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3170, Petroleum liquids — Manual sampling

ISO 3171, Petroleum liquids — Automatic pipeline sampling

3 Principle

The sample under analysis is exposed in a sample cell to the primary radiation of an X-ray tube. The count rates of the S K-L_{2,3} X-ray fluorescence and, where required, the count rate of the background radiation are measured. The sulfur content of the sample is determined from a calibration curve defined for the relevant measuring range.

NOTE The IUPAC X-ray line notation (S K-L_{2,3}) is used in this International Standard; the corresponding Siegbahn X-ray line notation (S-K α) is being phased out.

4 Reagents

4.1 DibutyIsulfide, of nominal sulfur content 21,92 % (m/m), or **dibutyIdisulfide**, of nominal sulfur content 35,95 % (m/m), used as a calibrating substance for sulfur.

Care should be taken due to volatility (see Annex A).

4.2 White oil (paraffinum perliquidum), for use as a blank solution, of high purity grade, with a sulfur content of less than 1 mg/kg. Check the blank solution prior to use with the spectrometer (5.1). A signal for sulfur shall not be detectable.

4.3 Methyl oleate, for use as a blank solution when FAME is analysed, with a sulfur content of less than 1 mg/kg. Check the blank solution prior to use with the spectrometer (5.1). A signal for sulfur shall not be detectable (i.e. the intensity shall be lower that the intensity equivalent to 1 mg/kg). Other oxygen-containing and sulfur-free blank solutions, such as octanol, can also be used.

5 Apparatus

5.1 Wavelength-dispersive X-ray fluorescence spectrometer, with the capability for measuring the count rates of the S K-L_{2,3} X-ray fluorescence radiation and the background radiation. Due to the inherently low background radiation produced by instruments utilizing monochromatic radiation for excitation, it is not mandatory to measure the background radiation when this type of instrument is used. The minimum requirements for the spectrometer are given in Table 1.

Component	Polychromatic excitation	Monochromatic excitation
Anode	Rhodium, scandium or chromium	Rhodium, scandium, chromium or titanium
Voltage ^a	No less than 30 kV	No less than 30 kV
Current ^a	No less than 50 mA	No less than 0,1 mA
Collimator or optic	Coarse collimator	Monochromator
Analysing crystal	Germanium, pentaerythrite or graphite	Germanium, pentaerythrite or graphite
Optical path ^b	Vacuum or helium	Vacuum or helium
Sample cup window ^c	Polyester film, 4 µm maximum	Polyester film, 4 µm maximum
Detector	Proportional counter with pulse-height analyser	Proportional counter with single channel analyser
Wavelengths	S K-L _{2,3} at 0,537 3 nm Background radiation at 0,545 nm	S K-L _{2,3} at 0,537 3 nm

ISO 20884:2011

https://strabledgitch.spectrometer/requirements239-4450-8f6b-

^a Lower-power systems may be used, provided they have been validated to meet the precision requirements specified in Clause 12.

^b In instruments using vacuum, the sample is not exposed directly to the vacuum of the optical path, but is separated by a secondary window.

^c Polyester film is the preferred choice as samples of very high aromatic content may dissolve polycarbonate film. There are possibly trace amounts of silicon, calcium and sulfur in some types of film. However, the effects should be cancelled out when samples and standards are analysed using the same batch of film. It is important that samples, standards and blanks be measured using the same batch of film to avoid bias. Other sample window materials with the same or better absorptivity, purity and stability can also be used.

5.2 Analytical balance, capable of weighing to the nearest 0,1 mg.

6 Sampling

Unless otherwise specified, samples shall be taken by the procedures described in ISO 3170 or ISO 3171.

7 Calibration solutions

7.1 Blank solution

Use white oil (4.2) as a blank solution.

If FAME is under analysis, use a blank solution in accordance with 4.3 to minimize potential matrix effects.

7.2 Stock solution

Weigh a quantity of the required calibrating substance (4.1) to the nearest 0,1 mg, and dilute with blank solution (4.2 or 4.3, as appropriate) at room temperature so that a stock solution with an accurately known sulfur content (to the nearest 1 mg/kg) of approximately 1 000 mg/kg is obtained.

Care should be taken due to volatility of the calibrating substance (see Annex A).

7.3 Calibration solutionsh STANDARD PREVIEW

Weigh an appropriate quantity of the stock solution (7.2) to the nearest 0,1 mg into bottles and dilute with blank solution (4.2 or 4.3, as appropriate) so that standard solutions with sulfur contents in accordance with Tables 2 and 3 are obtained by stirring at room temperature. The sulfur contents in the calibration solutions are indicated in milligrams per kilogram, rounded to the nearest 0,1 mg/kg50-8f6b-

2847c0493034/iso-20884-2011

Number	Sulfur content
	mg/kg
Blank solution 0	0,0
2,1	5,0
2,2	10,0
2,3	25,0
2,4	50,0

Table 2 — Calibration solutions –	 Low sulfur range
-----------------------------------	--------------------------------------

Table 3 — Calibra	tion solutions —	High sulfur range
-------------------	------------------	-------------------

Number	Sulfur content
	mg/kg
Blank solution 0	0,0
3,1	50,0
3,2	100,0
3,3	200,0
3,4	350,0
3,5	500,0

7.4 Storage and stability of the calibration solutions

Calibration solutions prepared in accordance with Table 2 have a limited stability and shall be used on the day they are prepared.

Calibration solutions prepared in accordance with Table 3 have a stability of no more than one week if stored in a cool location (refrigerator).

8 Settings

8.1 Measuring parameters

For optimum measuring parameters, refer to Table 1.

8.2 Optimization

The spectrometer shall be optimized in accordance with the manufacturer's specifications in order to achieve the optimum signal-to-noise ratio. The calibration solution with 50 mg/kg sulfur is recommended for optimization.

The counting time shall be set so that the total net count from a 50 mg/kg solution is \ge 40 000. This counting time shall be used for both calibration (see Clause 9) and measurement (see Clause 10).

8.3 Performance check of the spectrometer (standards.iteh.ai)

Prior to a measurement series (calibration and/or measurement), but in any case at least once daily, the manufacturer's specifications shall be used to check that the spectrometer is operating correctly, so that an optimum performance and a consistent standard of highest possible quality is ensured to be a specific to be a spec

2847c0493034/iso-20884-2011

Performance checks should be carried out on a regular basis, since such checks give valuable information about the status and stability of the spectrometer.

9 Calibration

9.1 General

Ensure that the spectrometer is in an optimized condition after having executed all provisions given in Clause 8 and operating optimally before calibration (see 8.3).

For the range from 5 mg/kg to 60 mg/kg sulfur, and for the range 60 mg/kg to 500 mg/kg sulfur, separate calibrations shall be conducted.

9.2 Calibration solutions

Transfer the calibration solutions (7.3) into suitable sample cups so that the minimum volume is achieved (see paragraph below). Depending on the concentration range, all calibration solutions prepared in accordance with Tables 2 or 3 shall be measured consecutively in ascending order. The count rate, I_s , of the S K-L_{2,3} X-ray fluorescence radiation at 0,537 3 nm, and the count rate, I_B , of the background radiation at 0,545 nm, shall be measured consecutively. For instruments utilizing monochromatic excitation, measurement of the background radiation is not required (see 5.1).

Sample quantities that are too small give a low result or relatively more evaporation/concentration effects when measuring volatile samples, while too much sample causes more sagging of the cell window, especially when light aromatic samples are measured. It is necessary to determine the minimum volume by proceeding as follows: start with 1 ml, measure the net count rate, add liquid, measure again the count rate. Repeat until the count rate remains constant for greater volumes of liquid. Plot a curve of net count rate vs volume and choose a volume greater than the point at which the curve becomes flat.

9.3 Calibration curves

The net count rate, R_0 , is calculated according to Equation (1) or (2). To determine the calibration, the net count rate, R_0 , is plotted as a function of the corresponding sulfur content. Use the spectrometer software or a spreadsheet program to perform a regression of the data to fit to Equation (3).

The regression calculation may be carried out either separately or using the spectrometer calculator.

$R_0 = I_{\rm S} - I_{\rm B}$ when background is measured, or	(1)
$R_0 = I_S$ for monochromatic excitation, when no background is measured	(2)
$R_0(x) = a + bx + cx^2$	(3)

where

R_0	is the net count rate for the relevant determination; EVIEW
U	II EII SIANDARD PREVIEW

- $I_{\rm S}$ is the count rate of the S K-L_{2.3} X-ray fluorescence radiation at 0,537 3 nm;
- $I_{\rm B}$ is the count rate of the background radiation at 0,545 nm;

https://standards.iteh.ai/catalog/standards/sist/23fa1c49-c239-4450-8f6b-

- x is the sulfur content of the relevant calibration solution, expressed in milligrams per kilogram (mg/kg);
- *a*, *b*, *c* are the parameters from the regression calculation;
- $R_0(x)$ is the net count rate computed from the regression calculation for the content, x.

NOTE Parameter *c* may be zero where the calibration curve has been shown to be linear.

9.4 Checking

Check at least two points on each calibration curve regularly, but not less frequently than every six months. It is highly recommended that quality control samples be used, with known sulfur contents for these checks. Check immediately when using a new batch of films. If the check result differs from the curve, execute a new calibration. Control limits are established from the laboratory statistical control charts, but initial values should be set before experience is established. Limits of the repeatability of this International Standard, or 0,7 times the reproducibility, are reasonable starting points. In case of suspected changes in the equipment status (e.g. drift), recalibration is required.

10 Procedure

CAUTION — Some samples such as process rundown streams can contain finely dispersed iron sulfide which can drop onto the cell window, giving erroneously high results. In such cases, it is recommended that the samples be filtered through a 0,2 micron membrane filter prior to analysis.