

SLOVENSKI STANDARD SIST ISO 2834-2:2008

01-junij-2008

Nadomešča:

SIST ISO 2834:2002

Grafična tehnologija - Laboratorijska izdelava preskusnih odtisov - 2. del: Tekoče tiskarske barve

Graphic technology - Laboratory preparation test prints - Part 2: Liquid printing inks

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST ISO 2834-2:2008

Ta slovenski standard/jeristoveten zbg/standSO 2834-2:2007d-40de-bc8b-

ff57872556e5/sist-iso-2834-2-2008

ICS:

87.080 Barvila. Tiskarske barve Inks. Printing inks

SIST ISO 2834-2:2008 en

SIST ISO 2834-2:2008

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST ISO 2834-2:2008

https://standards.iteh.ai/catalog/standards/sist/367b6777-54fd-40de-bc8b-ff57872556e5/sist-iso-2834-2-2008

SIST ISO 2834-2:2008

INTERNATIONAL STANDARD

ISO 2834-2

First edition 2007-12-15

Graphic technology — Laboratory preparation of test prints —

Part 2: Liquid printing inks

Technologie graphique — Préparation en laboratoire des impressions

iTeh STANDARD PREVIEW
Partie 2: Encres d'impression liquides
(standards.iteh.ai)

SIST ISO 2834-2:2008

https://standards.iteh.ai/catalog/standards/sist/367b6777-54fd-40de-bc8b-ff57872556e5/sist-iso-2834-2-2008

ISO 2834-2:2007(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 2834-2:2008</u> https://standards.iteh.ai/catalog/standards/sist/367b6777-54fd-40de-bc8b-ff57872556e5/sist-iso-2834-2-2008

COPYRIGHT PROTECTED DOCUMENT

© ISO 2007

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 2834-2 was prepared by Technical Committee ISO/TC 130, Graphic technology.

This first edition of ISO 2834-2 together with ISO 2834-1:2006 cancels and replaces the third edition ISO 2834:1999, which has been technically revised. It also incorporates its Technical Corrigendum, ISO 2834:1999/Cor. 1:2003). (standards.iteh.ai)

ISO 2834 consists of the following parts, under the general title *Graphic technology* — *Laboratory preparation* of test prints:

https://standards.iteh.ai/catalog/standards/sist/367b6777-54fd-40de-bc8b-ff57872556e5/sist-iso-2834-2-2008

- Part 1: Paste inks
- Part 2: Liquid printing inks
- Part 3: Screen printing inks

ISO 2834-2:2007(E)

Introduction

This part of ISO 2834 describes the test print preparation of liquid inks (gravure and flexography). These test prints have a homogeneous distribution of ink on a substrate, and a reproducible ink composition and relative ink coverage. Therefore, they are suitable for optical tests so that the measured reflectance can be assigned to a known ink coverage. If tests are done only for the characterization of mechanical and/or chemical properties of links, the user may apply less accurate methods. The methods described in this part of ISO 2834 are used in other International Standards, such as ISO 2846-3, ISO 2846-5 and ISO 2836. The preparation of test prints for paste inks (lithography) is described in ISO 2834-1 whilst screen inks will be covered in ISO 2834-3.

In ISO 2834-1, specific operational settings for the "round-to-round" and the "round-to-flat" offset ink printability testers are provided. Printability testers for liquid inks encompass a much wider array of operating processes and associated settings. In addition, it is generally acknowledged that it is not possible to directly determine the actual thickness of an ink film printed by gravure or flexography. Therefore, the guidelines included in this part of ISO 2834 are more general and will, of necessity, result in more opportunities for operator error when making the test prints.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 2834-2:2008</u> https://standards.iteh.ai/catalog/standards/sist/367b6777-54fd-40de-bc8b-ff57872556e5/sist-iso-2834-2-2008

Graphic technology — Laboratory preparation of test prints —

Part 2:

Liquid printing inks

1 Scope

This part of ISO 2834 specifies a test method for preparation of test prints produced with liquid water-based or solvent-based printing inks as used in flexography and gravure printing. These test prints are intended primarily for optical tests, such as colorimetry, transparency and reflection density as described in ISO 2846-3 and ISO 2846-5. They can also be used for testing gloss, light fastness and the chemical, physical and mechanical resistance to mechanical and chemical attack regarding either printing ink and/or substrate. Flexographic inks with higher viscosity, such as those cured by radiation are also covered. This part of ISO 2834 is not applicable to inks for ink jet printing.

2 Normative references STANDARD PREVIEW

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. 2834-2:2008 https://standards.iteh.ai/catalog/standards/sist/367b6777-54fd-40de-bc8b-

ISO 187, Paper, board and pulps #578tandard atmosphere for conditioning and testing and procedure for monitoring the atmosphere and conditioning of samples

ISO 2431, Paints and varnishes — Determination of flow time by use of flow cups

ISO 2846-3, Graphic technology — Colour and transparency of printing ink sets for four-colour-printing — Part 3: Publication gravure printing

ISO 2846-5, Graphic technology — Colour and transparency of printing ink sets for four-colour printing — Part 5: Flexographic printing

ISO 14981, Graphic technology — Process control — Optical, geometrical and metrological requirements for reflection densitometers for graphic arts use

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

anilox roller

roller with a chromium-plated or a ceramic surface with evenly distributed small cells generally mounted on a flexographic printing press to control the quantity of ink transferred to the printing forme

ISO 2834-2:2007(E)

3.2

extender

transparent material (varnish or polymer solution) to reduce the colorant concentration while maintaining viscosity to adapt ink colour concentration to print substrates

3.3

printing forme for flexography

cylinder or sleeve covered with a relief type rubber or photopolymer plate for application of printing ink to print substrate

printing forme for gravure

mechanically or laser-engraved or chemically-etched cylinder, sleeve or plate for application of printing ink to a print substrate

3.5

printability tester

device for uniformly applying a reproducible amount of ink to a substrate under specified conditions

3.6

retarder

additive to reduce the evaporation speed of the solvent in a liquid ink to prevent drying during the application of ink to the substrate

3.7

test-ready ink

iTeh STANDARD PREVIE printing ink of the appropriate composition and viscosity for the purpose of the test (standards.iteh.ai)

Test method

SIST ISO 2834-2:2008

https://standards.iteh.ai/catalog/standards/sist/367b6777-54fd-40de-bc8bff57872556e5/sist-iso-2834-2-2008

Principle

Using a printability tester, the gravure or flexographic printing ink is applied consistently and uniformly on the chosen substrate.

Test samples for the characterization of mechanical and/or chemical properties of inks can be prepared using any technique resulting in a uniform ink film in a desired thickness range. Ink film thicknesses different from those used in practice will have a strong influence on the results of such tests. These methods are not covered by this part of ISO 2834.

Due to differences between a printing press and a laboratory printability tester, prints produced on a laboratory printability tester can be different in appearance and in ink film thickness from commercial prints. To reach the same colour strength or print density, different settings from the actual press settings are generally required.

Apparatus and quality requirements 4.2

4.2.1 Apparatus

Any printability tester specifically designed for liquid printing inks of the type to be tested, liquid printing ink (solvent, water or radiation cured), substrate and drying apparatus may be used as long as the resulting printed ink film is uniform and at the required ink film thickness. Test conditions and variables associated with such equipment and materials shall be agreed upon between parties since variations in design and process have a strong influence on the test results and comparability of the properties of the test sample.

4.2.1.1 Printability tester.

To ensure repeatable operation, the printability tester shall provide motorized control of the ink transfer function. It is not practical to duplicate exactly a commercial production printing process in the laboratory. However, it is possible to duplicate results between two laboratories. The chosen laboratory printability tester must provide a consistent, uniform printed ink film at the required ink film thickness. To achieve this control, the printing speed and the pressure or impression (for flexography) between the printing forme and printing substrate shall be adjustable, and shall be constant and uniform during the printing process.

For gravure, the Shore hardness of the pressure roller as well as the use of an electrostatic printing aid shall be agreed upon and specified. For flexography, the anilox roller (see also 4.2.1.3) and the type of blade or doctoring device shall be agreed upon and specified.

4.2.1.2 Printing formes.

4.2.1.2.1 Gravure printing forme.

These may be produced by electromechanical engraving, laser engraving or etching. Printing formes can contain solid and tinted areas. The design of printing formes can either be of a standard layout with a designation of the supplier of the printability tester or special with respect to costumer needs. Printing formes shall have a designation.

It is not practical to duplicate commercial production printing in the laboratory, and therefore it is not necessary for the lab printability tester to have the same gravure engraved cylinder of a commercial printing press. The ink transfer process of the lab printability tester shall produce a printed ink film at a thickness that is representative of the industry. This can be evaluated by the use of a reflection densitometer using aim values that are agreed upon between parties. However, it is possible to duplicate results between two laboratories. Where different laboratories use the same or comparable laboratory testing equipments the following parameters are important to specify and should be exchanged.

Electromechanically engraved and etched formes, solid and tint areas, shall be specified by

- screen frequency, expressed in inverse centimetres (cm⁻¹)
- screen angle, expressed in degrees, <u>SIST ISO 2834-2:2008</u>
- https://standards.iteh.ai/catalog/standards/sist/367b6777-54fd-40de-bc8b-cell volume, expressed in millilitres, per metres squared (ml/m²); or both cross-diagonal of cells, expressed in micrometers (μm), and depth, expressed in micrometers (μm); or both diameter, expressed in micrometers (μm), and depth, expressed in micrometers (μm).

For electromechanically engraved formes, the width of channel, expressed in micrometers (µm), and the angle of the engraving stylus (in degrees) shall be specified additionally.

Laser-engraved formes shall be specified by cell shape, diameter(s), depth, (diameter/depth ratio), bottom shape, type of laser used, and cell volume for solid areas and diameter(s), depth and cell volume for each gradation step.

- NOTE 1 The cell volume can be calculated using shape and dimensions of cells or measured directly by applying definite volumes of liquids.
- NOTE 2 There is no reliable relation between tone values and cell volumes or dimensions.
- NOTE 3 Gravure printing formes can be cylinders, sleeves or plates. The precise measurement of cell volumes of gravure printing formes (as well as for anilox rollers for flexographic ink transport) is difficult. There are several possible methods all having their drawbacks regarding accuracy and reproducibility. Therefore, it might be useful to obtain a sufficient number of printing formes of a single lot to be shared between parties to ensure comparability of test prints.
- NOTE 4 The typical thickness of ink films applied by the gravure process is 6 $\mu m \pm 1 \ \mu m.$

4.2.1.2.2 Flexographic printing forme.

Flexographic printing formes shall be relief type formes. The design of printing formes can either be of a standard layout with a designation of the supplier of the printability tester or special with respect to costumer needs. Printing formes shall have a designation.