INTERNATIONAL STANDARD

First edition 2011-05-15

Surface chemical analysis — Secondaryion mass spectrometry — Calibration of the mass scale for a time-of-flight secondary-ion mass spectrometer

Analyse chimique des surfaces — Spectrométrie de masse des ions secondaires — Étalonnage de l'échelle de masse pour un spectromètre **iTeh STde masse des ions secondaires à temps** de vol

(standards.iteh.ai)

<u>ISO 13084:2011</u> https://standards.iteh.ai/catalog/standards/sist/3b5627a5-bad4-4f59-be01-224844136d13/iso-13084-2011

Reference number ISO 13084:2011(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 13084:2011</u> https://standards.iteh.ai/catalog/standards/sist/3b5627a5-bad4-4f59-be01-224844136d13/iso-13084-2011

COPYRIGHT PROTECTED DOCUMENT

© ISO 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 13084 was prepared by Technical Committee ISO/TC 201, *Surface chemical analysis*, Subcommittee SC 6, *Secondary ion mass spectrometry*.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 13084:2011</u> https://standards.iteh.ai/catalog/standards/sist/3b5627a5-bad4-4f59-be01-224844136d13/iso-13084-2011

Introduction

Secondary-ion mass spectrometry (SIMS) is a powerful technique for the analysis of organic and molecular surfaces. Over the last decade, instrumentation has improved significantly so that modern instruments now have very high repeatability and constancy (Reference [2] in the Bibliography). An increasing requirement is for the identification of the chemical composition of complex molecules from accurate measurements of the mass of the secondary ions. The relative mass accuracy to do this and to distinguish between molecules that contain different chemical constituents, but are of the same nominal mass (rounded to the nearest integer mass), is thus an important parameter. A relative mass accuracy of better than 10 ppm is required to distinguish between C_2H_4 (28,031 30 u) and Si (27,976 92 u) in a parent ion with total mass up to 1 000 u, and between CH_2 (14,015 65 u) and N (14,003 07 u) in parent ions with total mass up to 300 u. However, in a recent interlaboratory study (Reference [3] in the Bibliography), the average fractional mass accuracy was found to be 150 ppm. This is significantly worse than is required for unambiguous identification of ions. A detailed study (Reference [4] in the Bibliography) shows that the key factors degrading the accuracy include the large kinetic energy distribution of secondary ions, non-optimized instrument parameters and extrapolation of the mass scale calibration.

This International Standard describes a simple method, using locally sourced material, to optimize the instrumental parameters, as well as a procedure to ensure that accurate calibration of the mass scale is achieved within a selectable uncertainty.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 13084:2011</u> https://standards.iteh.ai/catalog/standards/sist/3b5627a5-bad4-4f59-be01-224844136d13/iso-13084-2011

Surface chemical analysis — Secondary-ion mass spectrometry — Calibration of the mass scale for a time-of-flight secondary-ion mass spectrometer

1 Scope

This International Standard specifies a method to optimize the mass calibration accuracy in time-of-flight SIMS instruments used for general analytical purposes. It is only applicable to time-of-flight instruments but is not restricted to any particular instrument design. Guidance is provided for some of the instrumental parameters that can be optimized using this procedure and the types of generic peaks suitable to calibrate the mass scale for optimum mass accuracy.

2 Symbols and abbreviated terms

2.1 Symbols iTeh STANDARD PREVIEW

- m mass of interest (standards.iteh.ai)
- m1calibration mass 1m2calibration mass 2
- m_2 calibration mass 2ISO 13084:2011 ΔM mass accurates (u) tandards.iteh.ai/catalog/standards/sist/3b5627a5-bad4-4f59-be01-
- *M*_P measured peak mass (u) 224844136d13/iso-13084-2011
- $M_{\rm T}$ true mass (u)
- U(m) mass uncertainty for a mass *m*, arising from calibration
- U_1 uncertainty in the accurate mass measurement of m_1
- U_2 uncertainty in the accurate mass measurement of m_2
- *U*₀ average uncertainty in an accurate mass measurement
- V_{R} reflector or acceptance voltage (V)
- W relative mass accuracy
- x number of carbon atoms
- *y* number of hydrogen atoms
- $\sigma(\Delta M)$ standard deviation of the mass accuracy for a number of peaks
- $\sigma_{\rm M}$ average of the standard deviations of ΔM for each of the four $C_x H_y^+$ cascades with 4, 6, 7 and 8 carbon atoms

2.2 Abbreviated terms

- MEMS micro-electromechanical system
- PC polycarbonate
- ppm parts per million
- r/min revolutions per minute
- SIMS secondary-ion mass spectrometry
- THF tetrahydrofuran
- ToF time of flight

3 Outline of method

Here, the method is outlined so that the detailed procedure, given in Clause 4, may be understood in context. Firstly, to optimize a time-of-flight mass spectrometer using this procedure, obtain a thin film of PC on a conducting substrate (silicon). The optimization procedure is achieved by carrying out the procedures in 4.3 to 4.5 iteratively; it uses 19 specific $C_x H_y$ peaks in the polycarbonate (PC) positive-ion mass spectrum. In 4.6, a general calibration procedure is given which provides the rules by which calibrations for inorganics and organics may be incorporated. This leads to a new generic set of ions for mass calibration beyond the calibration range are discussed and a recommended procedure is given to ensure that accurate mass is achieved, within a selectable uncertainty, for large molecules. Therefore, the procedure has two parts, optimization and calibration. Subclauses 4.1 to 4.5 are only required as part of the regular maintenance of the instrument as defined by the testing laboratory. Subclause 4.6 is required for all calibrations of the mass scale. This is summarized in the flowchart in Figure 1.

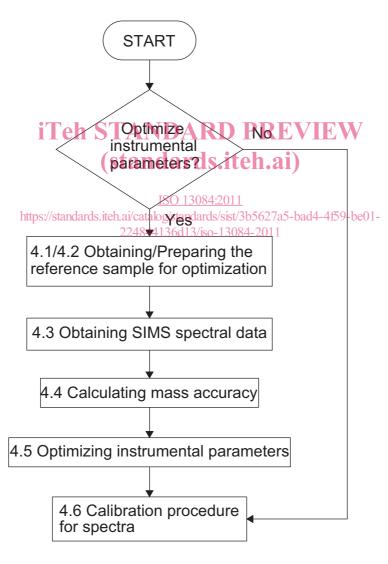


Figure 1 — Flowchart of sequence of operations of the method

4 Method for improving mass accuracy

4.1 Obtaining the reference sample for optimization

A sample of thin (10 to 100 nm) PC on a flat conducting substrate (e.g. silicon wafer) shall either be obtained or prepared, as described at 4.2.

4.2 Preparation of polycarbonate sample

4.2.1 Instructions for the preparation of a PC reference sample are provided. This method can give sample-to-sample repeatability in ToF SIMS spectra of better than 1,9 % [2]. To prepare such a sample for static SIMS analysis requires a clean working environment. To reduce surface contamination, clean glassware, tweezers and powderless gloves shall be used. The equipment required is a 1 ml glass pipette, a 100 ml glass-stoppered measuring flask and a device for spin casting. If a device for spin casting is not available, droplet deposition of the PC solution may be used. However, this will give poor repeatability, which will need to be carefully taken into account during spectral analysis.

4.2.2 Using poly(bisphenol A carbonate), abbreviated to PC, weigh out 100 mg on a clean piece of aluminium foil. Introduce the PC into the 100 ml, glass-stoppered measuring flask, add tetrahydrofuran (THF) of analytical reagent quality, to the 100 ml level line. Shake the flask to mix the PC and allow time to dissolve it completely. This produces a 1 mg/ml solution of PC in THF. The aluminium foil shall be freshly unrolled and the shiny surface used. Ensure that the THF is anhydrous. Otherwise, streaks will appear from water when spin coating as described in 4.2.3. The shelf life of freshly prepared stock solution shall be no more than one month owing to water take-up.

NOTE 1 It does not matter if the PC contains low levels of additives such as Irgafos.

NOTE 2 It does not matter if the final PC/THF solution concentration varies by ±20 %.

4.2.3 Use a conveniently sized (1 cm by 1 cm) piece of silicon, or another flat or polished conducting substrate, and cleanth it overnight by soaking in propan-2 of (isopropyl alcohol). Ultrasonically clean the substrate in fresh propan-2-ol and dry. If an ultrasonic bath is not available, just rinse the sample in fresh propan-2-ol. Mount the substrate on the spin casting device. Pipette approximately 0,2 ml of the PC solution onto the substrate and spin cast at 4 000 r/min for 25 s. Samples may be prepared by depositing the PC solution using a 5 ml pipette onto the silicon surface then air drying under ambient conditions. However, this method will result in an uneven PC film, so care shall be taken when comparing spectra, as peak intensities will vary.

NOTE 1 It is not essential what substrate is used, as long as it is conducting. Silicon has been found to give good-quality films.

NOTE 2 Using this procedure, the film thickness will be approximately 10 nm. The absolute thickness is not critical.

4.3 Obtaining the SIMS spectral data

4.3.1 Insert the PC sample inside the chamber of the SIMS instrument.

4.3.2 Operate the instrument in accordance with the manufacturer's or local documented instructions. The instrument shall have fully cooled following any bakeout. Ensure that the operation is within the manufacturer's recommended ranges for the ion-beam current, counting rates and any other parameter specified by the manufacturer. Check that the detector multiplier settings are correctly adjusted.

4.3.3 Select the normal analytical settings and acquisition time. For ToF instruments, select a repetition rate that gives a maximum mass of at least 800 u. If the total counts in the $C_9H_{11}O$ peak are less than 10 000, increase the acquisition time to ensure that this peak contains more than 10 000 counts. This may not be possible if the signal is too weak and it is not possible to achieve 10 000 counts within a reasonable time. To ensure that the maximum ion fluence $(1 \times 10^{16} \text{ ions/m}^2)$ is not exceeded, an enlarged raster area may be required. The acquisition time finally chosen will be a compromise between the data quality and the duration

of the work. Record the parameters set. Ensure that the detector is not saturated using the manufacturer's or local documented instructions. This may be achieved by reducing the number of primary ions per pulse.

NOTE For details of acquiring high-quality SIMS spectra with good repeatability and constancy, refer to ISO 23830^[1].

4.4 Calculating mass accuracy

4.4.1 Instrument manufacturers' software may provide the calculation of the peak position automatically; it is often sufficient to use this to obtain a value of M_0 . A more accurate and reliable method for measurement of the mass of the peak in the spectra, M_0 , can be used. An asymmetric Gaussian function, G_A , can be used to fit to the signal intensity versus the mass position, M_P , and the fitting used to calculate the peak position, M_0 . Where M_0 is the peak centre, M_P is the peak mass and G_0 is a scaling term, G_A , the fit to signal intensity, is given by

$$G_{\mathsf{A}} = G_{\mathsf{o}} \exp\left(\frac{-(M_{\mathsf{P}} - M_{\mathsf{o}})^2}{2[\sigma - \alpha(M_{\mathsf{P}} - M_{\mathsf{o}})]^2}\right)$$
(1)

and

$$\sigma = \frac{\text{FWHM}(\alpha = 0)}{2\sqrt{2\ln 2}}$$
(2)

where

iTeh STANDARD PREVIEW

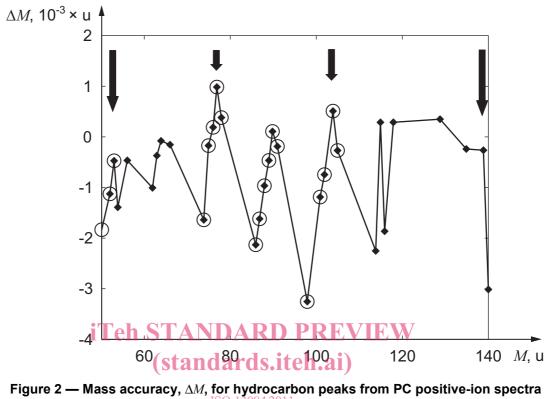
FWHM($\alpha = 0$) is the full width at half-maximum of the base Gaussian width for $\alpha = 0$. The term α gives the asymmetry, and for $\alpha = 0$ the function is pure Gaussian.

For each peak, fit Equation (1). Only use those intensities above 50 % of the maximum intensity to avoid interference from neighbouring peaks. You should calibrate using the peak position method you intend to use for accurate mass identification in your work. 224844136d13/iso-13084-2011

NOTE An asymmetric Gaussian function gives a good fit to a wide range of peak shapes, whereas the mean value can lead to significant errors for asymmetric peaks. Typically, the asymmetric Gaussian function is an excellent description of the peak down to 15 % of the maximum intensity, although the fitting, here, only covers to 50 %.

4.4.2 The mass accuracy, ΔM , is defined as the difference between the measured peak mass, $M_{\rm P}$, and the true mass, $M_{\rm T}$

$$\Delta M = M_{\rm P} - M_{\rm T} \tag{3}$$


and the relative mass accuracy, W, is given by

$$W = \frac{\Delta M}{M_{\rm T}} \tag{4}$$

In the text that follows, *W* will be given in parts per million.

4.4.3 Figure 2 shows ΔM for a range of hydrocarbon peaks of polycarbonate in an unoptimized instrument. ΔM varies widely along the mass range for ions with different fragmentation. This illustrates an instrument with modest mass scale accuracy.

In Figure 2 the peaks marked with an arrow are used to calibrate the spectra. The circumscribed symbols denote the mass peaks used to measure $\sigma_{\rm M}$. Here the asymmetric Gaussian function is used.

with a reflector voltage, V_R = 60 V hai/catalog/standards/sist/3b5627a5-bad4-4f59-be01https://standards.iteh.ai/catalog/standards/sist/

To provide a statistical measure of the divergence of ΔM from 0, select the peaks for the four well-defined $C_xH_y^+$ cascades with x = 4, 6, 7 and 8, respectively, identified in Figure 2 by the circumscribed data points and detailed in Table 1.

x value	lon	True mass, u
4	C ₄ H ₂	50,015 65
4	C ₄ H ₄	52,031 30
4	C ₄ H ₅	53,039 13
6	C ₆ H ₂	74,015 65
6	C ₆ H ₃	75,023 48
6	C ₆ H ₄	76,031 30
6	C ₆ H ₅	77,039 13
6	C ₆ H ₆	78,046 95
7	C ₇ H ₂	86,015 65
7	C ₇ H ₃	87,023 48
7	C ₇ H ₄	88,031 30