INTERNATIONAL **STANDARD**

ISO 16014-1

> Second edition 2012-07-01

Plastics — Determination of average molecular mass and molecular mass distribution of polymers using sizeexclusion chromatography —

Part 1:

General principles

iTeh STANDARD PREVIEW
Plastiques — Détermination de la masse moléculaire moyenne Set de la distribution des masses moléculaires des polymères par chromatographie d'exclusion stérique —

Partie Principes généraux

https://standards.iteh.ai/catalog/standards/sist/21837ed4-845e-4875-b1dfdf44524bb65a/iso-16014-1-2012

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 16014-1:2012 https://standards.iteh.ai/catalog/standards/sist/21837ed4-845e-4875-b1df-df44524bb65a/iso-16014-1-2012

COPYRIGHT PROTECTED DOCUMENT

© ISO 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland

Contents Page Forewordiv 1 Scope ______1 2 3 5 Reagents 3 5.1 Eluent 3 Reagent for column evaluation 3 5.2 5.3 Molecular mass standards 3 Reagent for flow rate marker (internal standard)4 5.4 5.5 Additives 4 Apparatus 4 6.1 General 4 6.2 Eluent reservoir ______4 6.3 Pumping system 4 Injector5 6.4 6.5 Columns 5 66 Detector 7 Tubing..... Temperature control h STANDARD PREVIEW 8 6.8 69 6.10 6.11 Procedure ISO 16014-1:2012 https://standards.iteh.ai/catalog/standards/sist/21837ed4-845e-4875-b1df-8 7 8 Data acquisition and processing 4bb65a/iso-16014-1-2012. 8.1 Data acquisition 8 8.2 Evaluation of data and correction of chromatograms9 Data processing 9 8.3 Expression of results ______10 9 9.1 Calibration curve 10 9.2 9.3 9.4 Cumulative molecular mass distribution curve 13 10 Precision 13 11 11.1 Apparatus and measurement parameters ______14 11.2 11.3 11.4 Calibration curve ______14 11.5 Results 15

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 16014-1 was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 5, *Physical-chemical properties*.

This second edition cancels and replaces the first edition (ISO 16014-1:2003), which has been technically revised. The main changes are the following:

- a) the normative references have been updated (see Clause 2);
- b) the text has been adapted to allow for the fact that a new part, ISO 16014-5, has now been published;
- c) Subclause 6.5 (concerning the chromatographic columns used) has been revised;
- d) Subclause 8.2 (concerning the evaluation of data and the correction of chromatograms) has been revised. https://standards.iteh.ai/catalog/standards/sist/21837ed4-845e-4875-b1df-It also incorporates the Technical Corrigendum ISQ 16014-1:2003/Con1:2005.

ISO 16014 consists of the following parts, under the general title *Plastics* — *Determination of average molecular* mass and molecular mass distribution of polymers using size-exclusion chromatography:

- Part 1: General principles
- Part 2: Universal calibration method
- Part 3: Low-temperature method
- Part 4: High-temperature method
- Part 5: Method using light-scattering detection

Plastics — Determination of average molecular mass and molecular mass distribution of polymers using size-exclusion chromatography —

Part 1:

General principles

1 Scope

This part of ISO 16014 specifies a general method for determining the average molecular mass and the molecular mass distribution of polymers using size-exclusion chromatography (SEC). The average molecular mass and the molecular mass distribution are calculated from a calibration curve constructed using polymer standards if using one of the SEC techniques described in Parts 2 to 4 of this International Standard or from a calibration curve constructed using absolute molecular mass data if using size-exclusion chromatography coupled with light-scattering detection (SEC-LS) as described in Part 5 of this International Standard.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 472, Plastics — Vocabulary

ISO 16014-1:2012

https://standards.iteh.ai/catalog/standards/sist/21837ed4-845e-4875-b1df-

ISO 16014-2:2012, Plastics — Determination of average molecular mass and molecular mass distribution of polymers using size-exclusion chromatography — Part 2: Universal calibration method

ISO 16014-3, Plastics — Determination of average molecular mass and molecular mass distribution of polymers using size-exclusion chromatography — Part 3: Low-temperature method

ISO 16014-4, Plastics — Determination of average molecular mass and molecular mass distribution of polymers using size-exclusion chromatography — Part 4: High-temperature method

ISO 16014-5:2012, Plastics — Determination of average molecular mass and molecular mass distribution of polymers using size-exclusion chromatography — Part 5: Method using light-scattering detection

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 472 and the following apply.

3.1

size-exclusion chromatography

SEC

a liquid chromatographic technique in which the separation is based on the hydrodynamic volume of molecules eluting in a column packed with porous non-adsorbing material having pore dimensions that are similar in size to the molecules being separated

NOTE The term gel permeation chromatography (GPC) should only be used where the porous non-adsorbing packing material is a gel; however, the term size-exclusion chromatography (SEC) is preferred.

3.2

light-scattering detection

LS detection

a technique for determining the mass or size of polymer molecules dissolved in solution by measuring the light scattered by the polymer molecules

3.3

molecular mass

M

sum of the masses of the atoms making up a molecule

NOTE Molecular weight is also used for molecular mass, but is deprecated.

3.4

average molecular mass

four types of average molecular mass are defined by the following equations, where N_i is the number of molecules of species i of molecular mass M_i and a is the exponent of the Mark-Houwink-Sakurada equation.

3.4.1

number-average molecular mass

 M_{n}

$$M_{\mathsf{n}} = \frac{\sum_{i=1}^{\infty} (N_i \times M_i)}{\sum_{i=1}^{\infty} N_i}$$
 iTeh STANDARD PREVIEW

(standards.iteh.ai)

3.4.2

mass-average molecular mass

 M_{W}

ISO 16014-1:2012

 $M_{\text{W}} = \frac{\sum_{i=1}^{\infty} (N_i \times M_i^2)}{\sum_{i=1}^{\infty} (N_i \times M_i)}$ https://standards.iteh.ai/catalog/standards/sist/21837ed4-845e-4875-b1df-df44524bb65a/iso-16014-1-2012

3.4.3

z-average molecular mass

 M_{7}

$$M_{z} = \frac{\sum_{i=1}^{\infty} (N_{i} \times M_{i}^{3})}{\sum_{i=1}^{\infty} (N_{i} \times M_{i}^{2})}$$
(3)

3.4.4

viscosity-average molecular mass

 $M_{\rm V}$

$$M_{\mathbf{V}} = \left[\frac{\sum_{i=1}^{\infty} (N_i \times M_i^{a+1})}{\sum_{i=1}^{\infty} (N_i \times M_i)} \right]^{1/a}$$

$$(4)$$

(2)

4 Principle

A polymer sample is dissolved in a suitable solvent to make a dilute solution. This solution is injected into the mobile phase and onto the SEC column, which is packed with non-adsorbing material made up of small particles having pores of similar or varying size. As the polymer sample passes through the column, the polymer molecules are separated from each other according to the difference in their molecular masses, or more precisely, the difference in their molecular sizes (i.e. their hydrodynamic volume). In SEC, the larger-size molecules cannot permeate into the pores, and thus elute faster, while smaller molecules can permeate into the pores and elute more slowly. The polymer concentration in the eluate is continuously monitored by a concentration-sensitive detector (coupled to a light-scattering detector if SEC-LS is being used) to give an SEC chromatogram.

In the SEC techniques described in Parts 2 to 4, the molecular mass at any elution time on the SEC chromatogram is determined from a calibration curve which is constructed using reference polymer standards with a narrow molecular mass distribution. In SEC-LS, described in Part 5 of this International Standard), a calibration curve constructed using absolute molecular mass data obtained from the SEC-LSchromatogram at any elution time is used. The average molecular mass and the molecular mass distribution of the unknown polymer are calculated by using the molecular mass and concentration data corresponding to each elution time.

5 Reagents

5.1 Eluent

The required purity of the eluent used for SEC varies with the application, but in general the solvent should be free of particulate matter and substances that react with the polymer or interfere with detection of the polymer. Additives such as antioxidants and salts can be used to prevent the degradation of the eluent, the aggregation of polymer molecules, the adsorption of the polymer on the packing material and for other purposes. A mixed eluent may also be used in the SEC techniques described in Parts 2 to 4 to modify the solubility and the refractive index, or to reduce the cost of the mobile phase. A mixed eluent cannot be used for SEC-LS measurements, however, because the polymer selectively adsorbs the components of the mixed eluent, thus giving an erroneous result.

5.2 Reagent for column evaluation

A low molecular mass compound is used for the determination of the theoretical plate number, asymmetry factor and resolution factor of the column.

5.3 Molecular mass standards

The test methods described in Parts 2 to 4 of this International Standard are not absolute methods but relative ones, and require a calibration curve for the calculation of the average molecular mass and the molecular mass distribution from the SEC chromatogram. This calibration curve is plotted using standards of known molecular mass and narrow molecular mass distribution. The value of $M_{\rm W}$ and/or $M_{\rm D}$ of the standard determined by an absolute method, such as light scattering, membrane osmometry, vapour pressure osmometry, ultracentrifugation or end-group analysis. The polydispersity $M_{\rm W}/M_{\rm D}$ is calculated by dividing the absolute value of $M_{\rm D}$. The polydispersity of the polymer standards shall lie within the following ranges:

$M_{\rm p}$ < 2 × 10 ³	$M_{\rm W}/M_{\rm n} < 1,20$
$2 \times 10^3 \le M_p < 10^6$	$M_{\rm W}/M_{\rm n} <$ 1,10
$10^6 \le M_p$	$M_{\rm W}/M_{\rm n} < 1,20$

ISO 16014-1:2012(E)

where

 $M_{\rm W}$ is the mass-average molecular mass;

 $M_{\rm n}$ is the number-average molecular mass;

 $M_{\rm p}$ is the molecular mass at peak maximum.

 M_p can be calculated from Equation (5):

$$M_{\rm p} = (M_{\rm p} \times M_{\rm w})^{1/2}$$
 (5)

NOTE Some commercially available molecular mass standards specify the value of $M_{\rm W}$ and $M_{\rm D}$ but not $M_{\rm D}$. In such cases, Equation (5) can be used to provide the value of $M_{\rm D}$, provided the molecular mass distribution of the polymer sample is a logarithmic normal distribution.

Some examples of commercially available molecular mass standards are given in Annex B.

In the case of SEC-LS (see Part 5 of this International Standard), such molecular mass standards are unnecessary because SEC-LS is an absolute method.

5.4 Reagent for flow rate marker (internal standard)

A low molecular mass compound is used to monitor the accuracy of the elution time, i.e. to evaluate whether or not the data are within the specification.

iTeh STANDARD PREVIEW

5.5 Additives

(standards.iteh.ai)

Additives to the eluents may be used to improve SEC performance and prevent sample degradation and the like.

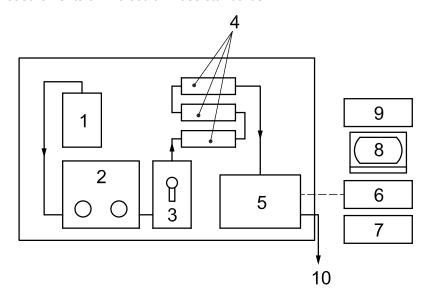
ISO 16014-1:2012

6 Apparatus

https://standards.iteh.ai/catalog/standards/sist/21837ed4-845e-4875-b1df-df44524bb65a/iso-16014-1-2012

6.1 General

A schematic diagram of an SEC system is shown in Figure 1. The essential components are an eluent reservoir, a pumping system, an injector, column(s), a detector, tubing, a recorder, a temperature-control system, and a data-processing system. For SEC-LS measurements, a light-scattering detector, i.e. a molecular-mass-sensitive detector, is coupled to the normal (concentration-sensitive) detector. Any light-scattering detector that meets the requirements specified for this method may be used.


6.2 Eluent reservoir

The eluent reservoir should preferably have sufficient capacity to hold the amount of eluent required for column calibration and successive measurements. Dissolved air in the eluent should preferably be removed before use by placing the solvent in a suitable container designed to reduce the pressure and placing this container in an ultrasonic bath, or by using a vacuum degasser between the reservoir and the pumping system. Particles in the eluent may be removed by membrane filtration. It is desirable in addition to bubble an inert gas through the eluent in the reservoir and blanket the surface of the eluent with the gas, and to shield the reservoir from light.

6.3 Pumping system

A constant, pulseless flow of eluent through the column is desirable. The flow rate should preferably be approximately 1 cm 3 /min for a column of approximately 8 mm inner diameter. The SEC system shall have an overall flow-rate precision of within ± 0.3 %. Lower flow rates are recommended for high molecular mass and/or shear-sensitive polymers and viscous eluents. To keep the flow rate constant, temperature control providing a stability of at least ± 1 °C is required for the pumping system.

The flow rate shall be monitored by the use of an internal standard, or by a direct method such as volume or mass measurements (see Annex A, Clause A.2), and corrected in the event of significant deviations. In the methods described in Parts 2 to 4 of this International Standard, knowledge of the value of the flow rate is not required because the method is a relative one in which the result is calculated from a calibration curve constructed from measurements on molecular mass standards.

Key

- 1 eluent reservoir
- 2 pump
- 3 injector
- 4 columns
- 5 detector
- 6 computer
- 7 recorder
- 8 display
- 9 plotter
- 10 to waste

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 16014-1:2012

https://standards.iteh.ai/catalog/standards/sist/21837ed4-845e-4875-b1df-df44524bb65a/iso-16014-1-2012

Figure 1 — Schematic diagram of SEC system

6.4 Injector

In addition to having an eluent bypass capability, the injector shall be able to hold the sample solution and inject the sample solution into the columns with minimum band broadening and minimum pressure change.

To maintain the required precise flow rate, temperature control equipment, or a precise air conditioner, is required for the injection system.

6.5 Columns

6.5.1 General

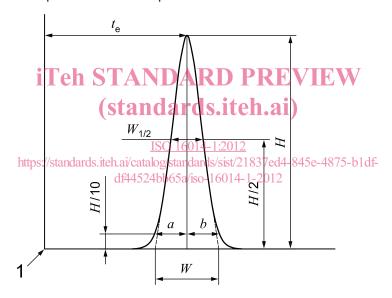
The function of the columns is to separate the sample molecules according to differences in their molecular size (mass). Columns usually consist of a stainless-steel tube with end fittings, filters and a porous packing material. There is no limitation on the column length or diameter or on the packing-material particle size.

6.5.2 Determination of theoretical plate number

Use a low molecular mass compound, such as ethylbenzene, to obtain a peak (see Figure 2) and calculate the theoretical plate number N of the set of columns from Equation (6) or (7):

$$N = 5.54 \times \left(t_{\rm e} / W_{1/2}\right)^2 \tag{6}$$

$$N = 16 \times (t_e / W)^2 \tag{7}$$


where

*t*e is the elution time to the peak maximum;

 $W_{1/2}$ is the peak width at half height;

W is the distance between the points of intersection of the two tangents to the peak with the baseline.

Requirements for the theoretical plate number are specified in ISO 16014-3 and ISO 16014-4.

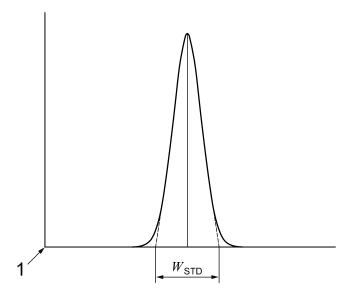
Key

1 injection

Figure 2 — SEC chromatogram of a low molecular mass compound

6.5.3 Determination of resolution factor

The resolution factor R of the set of columns can be calculated from Equation (8) by the use of the calibration curve (see 9.1 and Figure 5) and a molecular mass standard (see 5.3 and Figure 3) with a narrow molecular mass distribution that elutes at a point close to the apex of the sample peak:


$$R = -1/(D \times W_{STD}) \tag{8}$$

where

D is the slope of the calibration curve at the point corresponding to the apex of the sample peak;

 W_{STD} is the peak width at the baseline of the molecular mass standard.

Requirements for the resolution factor are specified in ISO 16014-3 and ISO 16014-4.

Key

1 injection

Figure 3 — SEC chromatogram of a narrow molecular mass distribution standard

iTeh STANDARD PREVIEW

6.5.4 Determination of asymmetry factor ards.iteh.ai)

The asymmetry factor A_S of the set of columns can be calculated from Equation (9), using data obtained from the peak produced by a low molecular mass compound such as ethylbenzene (see Figure 2):

https://standards.iteh.ai/catalog/standards/sist/21837ed4-845e-4875-b1df-
$$A_S = (a+b)/(2\times a)$$
 df44524bb65a/iso-16014-1-2012 (9)

where

 A_{S} is the asymmetry factor;

- a is the width of the leading half of the peak at 10 % peak height;
- b is the width of the trailing half of the peak at 10 % peak height.

Requirements for the asymmetry factor are specified in ISO 16014-3 and ISO 16014-4.

6.6 Detector

The detector is used to continuously monitor the concentration of the polymer in the eluent coming off the columns. There are several types of commercially available concentration-sensitive detector, such as the refractive index detector, ultraviolet/visible detector, infrared detector and fluorescence detector. For SEC-LS measurements, a light-scattering detector connected directly to the SEC system is used.

The volume of the flow cell shall be sufficiently small so as to maintain the narrow molecular mass distribution of the molecules separated by the columns and to maintain the overall theoretical plate number and the resolution factor of the set of columns determined in 6.5.2 and 6.5.3.

The sensitivity of the concentration-sensitive detector used in Parts 2 to 4 of this International Standard shall be such that it can detect a difference in refractive index of 10^{-8} or a difference in UV absorbance of 10^{-4} . The signal/noise ratio shall normally be greater than 200, although a lower ratio is admissible in the case of extremely broad molecular mass distributions or low-concentration measurements on extremely high molecular mass samples. In such cases, the signal/noise ratio shall, however, be greater than 20. Signal drift shall be less than 10 % of the peak height per hour, at the appropriate maximum sensitivity level. The sensitivity of