International Standard



898/5

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION®MEXCHAPODHAR OPFAHИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ®ORGANISATION INTERNATIONALE DE NORMALISATION

## Mechanical properties of fasteners — Part 5 : Set screws and similar threaded fasteners not under tensile stresses

Propriétés mécaniques des éléments de fixation – Partie 5 : Vis sans tête et éléments de fixation filetés similaires non soumis à des contraintes de traction **Teh STANDARD PREVIEW** 

First edition - 1980-07-15

## <u>ISO 898-5:1980</u> https://standards.iteh.ai/catalog/standards/sist/438684f9-5e17-4369-8e23-229002850214/iso-898-5-1980

(standards.iteh.ai)

Ref. No. ISO 898/5-1980 (E)

**Descriptors** : fasteners, screws, set screws, designation, materials specifications, chemical composition, mechanical properties, mechanical tests, hardness tests, decarburisation, torque.

## Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 898/5 was developed by Technical Committee ISO/TC 2, EVIEW Fasteners, and was circulated to the member bodies in April 1979.

It has been approved by the member bodies of the following countries :

|                |                    | <u>ISO 898-5:1980</u>                                 |
|----------------|--------------------|-------------------------------------------------------|
| Australia      | Germanyn Farris.it | eh.ai/catalog/otandards/sist/438684f9-5e17-4369-8e23- |
| Austria        | Hungary            | 2290028fomaniao-898-5-1980                            |
| Belgium        | India              | South Africa, Rep. of                                 |
| Bulgaria       | Ireland            | Spain                                                 |
| Canada         | Italy              | Sweden                                                |
| Chile          | Japan              | Switzerland                                           |
| Czechoslovakia | Korea, Rep. of     | United Kingdom                                        |
| Denmark        | Netherlands        | USA                                                   |
| Finland        | New Zealand        | USSR                                                  |
| France         | Norway             | Yugoslavia                                            |

No member body expressed disapproval of the document.

© International Organization for Standardization, 1980 •

## Mechanical properties of fasteners – Part 5: Set screws and similar threaded fasteners not under tensile stresses

## iTeh STANDARD PREVIEW

### Scope and field of application 1

(standards.iteh.ai) ISO/R 80, Rockwell hardness test (B and C scales) for steel.

This International Standard specifies the mechanical properties 398-150/R 81, Vickers hardness test for steel. of set screws and similar fasteners not under tensile stresses intandard the range from 1,6 up to and including 39 mm thread diameter 214/is 80%157/180Surface discontinuities on bolts, screws and which are made of carbon steel or alloy steel. studs<sup>1)</sup>.

It does not apply to screws requiring special properties such as

- specified tensile stresses (see ISO 898/1);
- weldability;
- corrosion resistance (see ISO 3506);
- ability to withstand temperatures above + 300 °C or below - 50 °C.

NOTE - Screws made from free-cutting steel should not be used above + 250 °C.

## 2 References

ISO/R 79, Brinell hardness test for steel.

#### 3 Designation system

The property classes are designated by the symbols shown in table 1.

The numerical part of the symbol represents 1/10 of the minimum Vickers hardness.

The letter H in the symbol refers to hardness.

### Table 1 – Designations of property classes in relation to Vickers hardness

| Property class            | 14H | 22H | 33H | 45H |
|---------------------------|-----|-----|-----|-----|
| Vickers hardness, HV min. | 140 | 220 | 330 | 450 |

<sup>1)</sup> At present at the stage of draft.

#### **Raw materials** 4

Set screws shall be made of steel conforming to the requirements specified in table 2.

For property class 45H, other materials may be used provided that the torque test requirements in 6.4 are met.

#### 5 **Mechanical properties**

When tested by the methods specified in clause 6, the set screws shall have, at ambient temperature, the mechanical properties specified in table 3.

## Table 2 - Steel specifications

|                |                              |                       | Chemical composition, % |      |      |      |  |  |
|----------------|------------------------------|-----------------------|-------------------------|------|------|------|--|--|
| Property class | Material                     | Heat treatment        |                         | С    | Р    | S    |  |  |
|                |                              |                       | max.                    | min. | max. | max. |  |  |
| 14H            | Carbon steel <sup>1)2)</sup> |                       | 0,50                    | _    | 0,11 | 0,15 |  |  |
| 22H            | Carbon steel <sup>3)</sup>   | Quenched and tempered | 0,50                    | _    | 0,05 | 0,05 |  |  |
| 33H            | Carbon steel <sup>3)</sup>   | Quenched and tempered | 0,50                    | -    | 0,05 | 0,05 |  |  |
| 45H            | Alloy steel <sup>3)4)</sup>  | Quenched and tempered | 0,50                    | 0,19 | 0,05 | 0,05 |  |  |

1) Free-cutting steel may be used, with lead content 0,35 % max., phosphorus content 0,11 % max. and sulphur content 0,34 % max.

2) Case hardening is allowed in the case of square-head set screws.

Steel with lead content 0,35 % max. may be used. 3)

Shall contain one or more of alloying elements chromium, nickel, molybdenum, vanadium or boron. 4)

## (standards.iteh.ai)

## ISO 898-5:1980

https://standards.iteh.ai/catalog/standards/sist/438684f9-5e17-4369-8e23-

Table 3200 Mechanical properties0

| Mechanical properties                               |                        |      | Property class* |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                  |  |  |
|-----------------------------------------------------|------------------------|------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|--|--|
|                                                     | viecnanical properties |      | 14H             | 22H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33H              | 45H              |  |  |
| Viekers bardness HV                                 |                        | min. | 140             | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 330              | 450              |  |  |
|                                                     |                        | max. | 290             | Property class*           IH         22H         33H           40         220         330           30         300         440           33         209         314           76         285         418           75         95         -           -         -         -           -         33         44           -         -         -           -         30         44           -         -         -           -         30         44           -         -         -           -         12H_1         23H_1           -         0,015         0,015                        | 560              |                  |  |  |
| Brinell bardnoss HB E                               | - 30 D2                | min. | 133             | 209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 314              | 428              |  |  |
|                                                     | - 50 D-                | max. | 276             | 4H         22H         33H         45H           40         220         330         450           90         300         440         560           33         209         314         428           76         285         418         532           75         95         -         -           05         -         -         -           -         30         44         53           -         30         44         53           -         -         -         see table 5           - $\frac{1}{2}H_1$ $\frac{2}{3}H_1$ $\frac{3}{4}H_1$ -         0,015         0,015         ** |                  |                  |  |  |
|                                                     |                        | min. | 75              | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | _                |  |  |
| Bookwall bardnoss                                   | nn <b>b</b>            | max. | 105             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                | _                |  |  |
| NOCKWEII Hardriess                                  | HRC                    | min. | -               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33               | 45               |  |  |
|                                                     |                        | max. | _               | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44               | 53               |  |  |
| Torque strength                                     |                        |      | —               | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                | see table 5      |  |  |
| Minimum height of non-decarburized thread zone, $E$ |                        |      | -               | $\frac{1}{2}H_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{2}{3}H_1$ | $\frac{3}{4}H_1$ |  |  |
| Maximum depth of complete decarburization, G        |                        | mm   | —               | 0,015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,015            | **               |  |  |
| Surface-hardness HV 0,3                             |                        | max. | -               | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 450              | 580              |  |  |

Classes 14H, 22H and 33H are not for hexagon socket set screws.

No complete decarburization permitted in property class 45H.

### Test methods for determination of 6 mechanical properties

## 6.1 Hardness tests

Hardness tests shall be conducted as near as practicable to the centre position of the point ends of the screw. If the maximum hardness is exceeded, a retest shall be conducted on a crosssection 0,5 mm back from the point end. In case of doubt, the Vickers hardness test is decisive for acceptance.

Hardness readings for the surface hardness shall be taken on the end of the screw, which will be prepared by slightly grinding or polishing to ensure reproducible readings.

## 6.1.1 Vickers hardness test

The Vickers hardness test shall be carried out in accordance with the provisions of ISO/R 81.

### 6.1.2 Brinell hardness test

The Brinell hardness test shall be carried out in accordance with the provisions of ISO/R 79. iTeh STANDAR<sup>2</sup>

## 6.1.3 Rockwell hardness test

carbon restoration : A process of restoring surface carbon loss by heat treating in a furnace atmosphere of properly con-

metallographic examination.

trolled carbon potential.

6.2.1 Definitions

rization.

metal.

carburization : A process of increasing surface carbon to a content above that of the base metal.

base metal hardness : The hardness closest to the surface (when traversing from core to outside diameter) just before an

increase or decrease occurs denoting carburization or decarbu-

decarburization : Generally, the loss of carbon at the surface

partial decarburization : Decarburization with loss of carbon

sufficient to cause a lighter shade of tempered martensite and

significantly lower hardness than that of the adjacent base

complete decarburization : Decarburization with sufficient carbon loss to show only clearly defined ferrite grains under

of commercial ferrous materials (steels).

Measurement methods

(standard6221e Microscopic method

This method allows the determination of both E and G. The Rockwell hardness test shall be carried out in accordance 898

with the provisions of ISO/R 80 https://standards.iteh.ai/catalog/standard heist period and the sections taken

## 6.2 Decarburization test

Using the appropriate measuring method (6.2.2.1 or 6.2.2.2 as applicable), the longitudinal section of the thread shall be examined to determine that the height of the zone of base metal (E) and the depth of the zone with complete decarburization (G) are within specified limits, (see figure 1).

The minimum values for E and the maximum values for G are specified in table 3.

229002850214/isthrough the thread axis approximately half a nominal diameter from the end of the screw, after all heat treatment operations have been performed on the product. The specimen shall be mounted for grinding and polishing in a clamp or plastic mount, the latter being the preferred method.

> After mounting, grind and polish the surface in accordance with good metallographic practice.

> Etching in a 3 % nital (concentrated nitric acid in ethanol) solution is usually suitable for showing changes in microstructure caused by decarburization.



Figure 1

Unless otherwise agreed between the interested parties, 100 X magnification shall be used for examination.

If the microscope is of a type with a ground glass screen, the extent of decarburization can be measured directly with a scale. If an eyepiece is used for measurement, it should be of an appropriate type, containing a cross-hair or a scale.

**6.2.2.2** Hardness method (Referee method for partial decarburization and carburization)

The hardness measurement method is applicable only for threads with pitches of 1,25 mm and larger, except for property class 45H, where it is applicable for all sizes.

The hardness measurements are made at three points in accordance with figure 2. Values for E are given in table 3.

Hardness determination for point 3 shall be made on the pitch line of the thread adjacent to the thread on which determinations at points 1 and 2 are made.

The Vickers hardness value at point 2 shall be equal to or greater than that at point 1 minus 30 Vickers units. In this case the height of the non-decarburized zone E is at least as specified in table 4.

The Vickers hardness value at point 3 shall be equal to or less than that at point 1 plus 30 Vickers units. An increase of more than 30 Vickers units indicates carburization.

Complete decarburization up to the maximum specified in table 3 cannot be detected by the hardness measurement method.

 ${\sf NOTE}-{\sf Careful}$  differentiation should be made between an increase in hardness caused by carburization and that due to heat treatment or cold working of the surface.

## 6.3 Surface integrity test

The surface integrity test shall be carried out in accordance with the provisions of ISO 6157/I.



Figure 2

| Table 4 — Values for $H_1$ | and | Ε |
|----------------------------|-----|---|
|----------------------------|-----|---|

| Pitch<br>the th | of<br>iread | P<br>mm | 0,5   | 0,6   | 0,7   | 0,8   | 1     | 1,25  | 1,5   | 1,75  | 2     | 2,5   | 3     | 3,5   | 4     |
|-----------------|-------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $H_1$           |             | mm      | 0,307 | 0,368 | 0,429 | 0,491 | 0,613 | 0,767 | 0,920 | 1,074 | 1,227 | 1,534 | 1,840 | 2,147 | 2,454 |
| E Prop-         | Prop-       | 22H     | 0,154 | 0,184 | 0,215 | 0,245 | 0,307 | 0,384 | 0,460 | 0,537 | 0,614 | 0,767 | 0,920 | 1,074 | 1,227 |
| min.            | erty        | 33H     | 0,205 | 0,245 | 0,286 | 0,327 | 0,409 | 0,511 | 0,613 | 0,716 | 0,818 | 1,023 | 1,227 | 1,431 | 1,636 |
| mm              | Class       | 45H     | 0,230 | 0,276 | 0,322 | 0,368 | 0,460 | 0,575 | 0,690 | 0,806 | 0,920 | 1,151 | 1,380 | 1,610 | 1,841 |

# 6.4 Proof torque test for hexagon socket set screws class 45H

Hexagon socket set screws class 45H shall conform to the torque requirements given in table 5.

The set screw shall be inserted in a test block as shown in figure 3 until the top surface of the screw face is flush with the

test block and the point bears on a firm base, for example a backing screw inserted from the other side.

Using a hexagon test bit with a tolerance of h9 for the widths across flats, with a minimum width across corners of > 1,13 s min. and a hardness of 55 to 60 HRC, engaging the full depth of the set screw socket, the screw shall withstand the test torque given in table 5 without splitting or cracking.



Figure 3 - Torque test details

| Nominal thread |            | Test torque |            |           |     |
|----------------|------------|-------------|------------|-----------|-----|
| diameter       | Flat point | Cup point   | Cone point | Dog point | N∙m |
| 3              | 4          | 4           | 5          | 5         | 0,9 |
| 4              | 5          | 5           | 6          | 6         | 2,5 |
| * 5            | 5          | 6           | 8          | 8         | 5   |
| 6              | 8          | 8           | 8          | 8         | 8,5 |
| 8              | 8          | 10          | 10         | 10        | 20  |
| 10             | 10         | 12          | 12         | 12        | 40  |
| 12             | 16         | 16          | 16         | 16        | 65  |
| 16             | 20         | 20          | 20         | 20        | 160 |
| 20             | 20         | 25          | 25         | 25        | 310 |
| 24             | 25         | 30          | 30         | 30        | 520 |

Table 5 - Torque requirements

## 7 Marking

## 7.1 Marking of the property classes

Marking of screws with property classes as described in clause 3 is not generally required. If in special cases marking is agreed

between the interested parties the symbol of the property class should be used as the marking symbol.

## 7.2 Trade marking

A trade (identification) marking of the manufacturer is not required.

# iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 898-5:1980</u> https://standards.iteh.ai/catalog/standards/sist/438684f9-5e17-4369-8e23-229002850214/iso-898-5-1980

٠