INTERNATIONAL STANDARD

Second edition 2011-03-15

Road vehicles — Determination of centre of gravity

Véhicules routiers — Détermination du centre de gravité

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10392:2011</u> https://standards.iteh.ai/catalog/standards/sist/2ff5fcee-4fd8-4784-93a5-60dcd6927f50/iso-10392-2011

Reference number ISO 10392:2011(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10392:2011</u> https://standards.iteh.ai/catalog/standards/sist/2ff5fcee-4fd8-4784-93a5-60dcd6927f50/iso-10392-2011

COPYRIGHT PROTECTED DOCUMENT

© ISO 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents

Forewo	prdi	v			
Introdu	Introductionv				
1	Scope	1			
2	Normative references	1			
3	Terms and definitions	1			
4 4.1 4.2	Test conditions and preliminary measurements Operating and other liquids Preliminary measurements	1 1 1			
5 5.1 5.2	Determination of coordinates in horizontal plane Location of CG longitudinally Location of CG laterally	2 2 2			
6 6.1 6.2 6.3	Determination of CG height: Axle lift method Loading conditions, suspensions and mechanical parts Measuring procedure Accuracy of determined parameters	2 2 3 4			
6.5 6.6	Location of CG above ground include and in	+ 4 5			
7 7.1 7.2	Determination of CG height: Stable pendulum method General	5 5 6			
7.3 7.4 7.5 7.6	Measuring procedure Accuracy of determined parameters Determination of platform properties Determination of applied torque	6 7 7 7			
7.7 7.8 7.9	Consideration of platform deflection Location of CG above ground Data presentation	8 8 8			
Annex	A (informative) Example of test report — Axle lift method	9			
Annex B (informative) Example of test report — Stable pendulum method11					
Bibliography13					

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 10392 was prepared by Technical Committee ISO/TC 22, *Road vehicles*, Subcommittee SC 9, *Vehicle dynamics and road-holding ability*.

This second edition cancels and replaces the first edition (ISO 10392:1992). Clause 7 has been added. (standards.iteh.ai)

<u>ISO 10392:2011</u> https://standards.iteh.ai/catalog/standards/sist/2ff5fcee-4fd8-4784-93a5-60dcd6927f50/iso-10392-2011

Introduction

Two methods for determining the height of the centre of gravity above the ground are presented. The first method, the axle lift method, was the only method contained in ISO 10392:1992. The second method, a stable pendulum method, was added to this second edition of ISO 10392. The model, assumptions, and measurements used for the stable pendulum method have many analogies to the unstable pendulum method (often referred to as the tilt table method). Clause 7 includes a brief discussion of the unstable pendulum method for determining vehicle centre of gravity (CG) height. Other procedures such as vertical balance methods and vehicle hang methods are also used.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10392:2011</u> https://standards.iteh.ai/catalog/standards/sist/2ff5fcee-4fd8-4784-93a5-60dcd6927f50/iso-10392-2011

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10392:2011</u> https://standards.iteh.ai/catalog/standards/sist/2ff5fcee-4fd8-4784-93a5-60dcd6927f50/iso-10392-2011

Road vehicles — Determination of centre of gravity

1 Scope

This International Standard specifies methods for determining the location of the centre of gravity (CG) of a road vehicle, as defined in ISO 3833. A method for determining the coordinates of the CG in the horizontal plane is provided. Two methods for determining the height of the CG above the ground are specified.

The axle lift and the stable pendulum methods are the most common methods for determining vehicle CG height. The axle lift method requires less dedicated equipment and is typically an easier and less expensive method than the stable pendulum method. The axle lift method can generally provide CG height accuracy in the range of a few percent, while the stable pendulum method can provide accuracy in the range of 0,5 %.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies **restitential**)

ISO 612, Road vehicles — Dimensions of motor vehicles and towed vehicles — Terms and definitions ISO 10392:2011

ISO 3833, Road vehicles: <u>//staTypes.itch.Terms</u>and.defihitionStSfcee-4fd8-4784-93a5-60dcd6927f50/iso-10392-2011

ISO 8855, Road vehicles — Vehicle dynamics and road-holding ability — Vocabulary

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 612, ISO 3833 and ISO 8855 apply.

4 Test conditions and preliminary measurements

4.1 Operating and other liquids

The fuel tank shall be completely full. Fuel motion within an unfilled fuel tank can have an adverse effect on the test results. If the displacement of other liquids (operating and other) due to the inclination of the vehicle during testing is considered significant, this shall be taken into account.

4.2 Preliminary measurements

With the vehicle horizontal, and in accordance with the dimensions given in ISO 612 and ISO 8855, measure and record:

*l*_{left}, the wheelbase, left, in millimetres;

 l_{right} , the wheelbase, right, in millimetres;

- $b_{\rm f}$, the track, front, in millimetres;
- $b_{\rm r}$, the track, rear, in millimetres;
- m_1 , the wheel load, front left, in kilograms;
- m_2 , the wheel load, front right, in kilograms;
- m_3 , the wheel load, rear left, in kilograms;
- m_4 , the wheel load, rear right, in kilograms.

5 Determination of coordinates in horizontal plane

5.1 Location of CG longitudinally

The horizontal distance between centre of front axle and CG, x_{CG} , in millimetres, is determined by the equation:

$$x_{CG} = \frac{m_{r}}{m_{v}} \times l$$
(1)

ire

(1)

(1)

where

m _r	$= m_3 + m_4$ (as defined in 4.2) is rear axle load, in kilograms;	(2)
m _v	https://standards.iteh.ai/catalog/standards/sist/2ff5fcee-4fd8-4784-93a5- = $m_1 + m_2 + m_3 + m_4$ (as defined in 4.2) is total mass of vehicle, in kilograms;	(3)
l	= 0,5 $(l_{\text{left}} + l_{\text{right}})$ (as defined in 4.2)	(4)

 $l = 0.5 (l_{left} + l_{right})$ (as defined in 4.2) is wheelbase of the vehicle, in millimetres.

5.2 Location of CG laterally

The horizontal distance between the longitudinal median plane of the vehicle and the CG (positive to the left), y_{CG} , in millimetres, is determined by the equation:

$$y_{\rm CG} = \frac{b_{\rm f}(m_1 - m_2) + b_{\rm r}(m_3 - m_4)}{2m_{\rm v}}$$
(5)

where all symbols are as defined in 4.2.

6 Determination of CG height: Axle lift method

6.1 Loading conditions, suspensions and mechanical parts

Any load shall be held in place to avoid displacement due to the inclination of the vehicle.

After loading the vehicle to the desired loading conditions, the wheel suspension can be blocked if necessary, to avoid changes in deflection due to the inclination of the vehicle. This may also apply to other vehicle components that could affect the test result due to flexible mounting.

When lifting the vehicle, the gear-box shall be in neutral. The parking-brake shall be released; rolling of the wheels of one axle only shall be avoided by wedges or other means. The front wheels shall remain pointing straight ahead as far as possible.

6.2 Measuring procedure

- **6.2.1** With the vehicle horizontal, measure and record the static radii:
- *r*_{stat,1}, the static loaded radius, front left, in millimetres;
- *r*_{stat.2}, the static loaded radius, front right, in millimetres;
- *r*_{stat.3}, the static loaded radius, rear left, in millimetres;
- $r_{\text{stat,4}}$, the static loaded radius, rear right, in millimetres.

The static loaded radius may be determined as shown in Figure 1. The formula is sufficiently accurate for the test procedure described in this International Standard.

Key

- d_w wheel diameter
- *d'*_w loaded wheel diameter
- r_{stat} static loaded radius

Figure 1 — Determination of static loaded radius, r_{stat}

6.2.2 Lift one axle in steps (three or more steps are recommended). Record the axle load of the other axle and the lifting angle for each position. The maximum lifting angle and the accuracy of the scale used to measure axle load affect the accuracy of the computation of the CG height.

6.2.3 To take the hysteresis into account, lower the lifted axle by steps back to the level position and record axle loads and lifting angle as described in 6.2.2.

6.2.4 Plot the axle loads against the tangent of the corresponding lifting angles and determine the mean value of axle load for a corresponding lifting angle. The plot can also be useful for checking the linearity of the measurements. An alternative to generating the plot is to compute the individual CG heights using the individual load and angle measurements, using the equations provided in 6.5, and then averaging these values to get a final answer.

6.2.5 It is recommended that all the measurements be repeated lifting the other axle.

6.2.6 It may also be desirable to determine the lifting angle from the wheelbase and the elevation of the wheels above the ground for each inclination position. In this case the change in tyre deformation caused by lifting one end of the vehicle shall be taken into consideration.

6.3 Accuracy of determined parameters

The following accuracies are required:

—	absolute a	axle load value:	±0,2 %;
	change in axle loads due to lifting:		±2,5 %;
	NOTE	Applies to scales which o	do not measure absolute loads, but changes in loads.
	dimensions:		< 2,000 mm: ±1 mm;
			> 2,000 mm: ±0,05 %;
	angles:		±0,5 %.

6.4 Determination of axle load and lifting angle

The following values are obtained from the plotted data by linear curve fitting:

- m'_{f} and m'_{r} which are axle loads at front and rear respectively of the axle remaining on the ground while the vehicle is inclined;
- θ which is the corresponding lifting angle.

iTeh STANDARD PREVIEW

Location of CG above ground (standards.iteh.ai)

The height of the CG above ground, z_{CG} , in millimetres, is determined by the equations:

$$z_{\text{CG}} = \frac{l(m'_{\text{f}} - m_{\text{f}})}{m_{\text{v}} \times \tan\theta} + r_{\text{stat,f}} \text{https://standards.iteh.ai/catalog/standards/sist/2ff5fcee-4fd8-4784-93a5-60dcd6927f50/iso-10392-2011}$$
(6)

or

6.5

$$z_{\rm CG} = \frac{l(m'_{\rm r} - m_{\rm r})}{m_{\rm v} \times \tan \theta} + r_{\rm stat,r}$$
(7)

where

m _f	$= m_1 + m_2$ (as defined in 4.2) is front axle load, in kilograms;	(8)
m _r	$= m_3 + m_4$ (as defined in 4.2) is rear axle load, in kilograms;	(9)
^r stat,f	$= 0,5(r_{\text{stat},1} + r_{\text{stat},2})$ is static loaded radius, front, in millimetres;	(10)
^r stat,r	$= 0,5(r_{\text{stat,2}} + r_{\text{stat,3}})$ is static loaded radius, rear, in millimetres;	(11)

l and m_v are as defined in 5.1.

NOTE $m_{\rm f}$ and $m_{\rm r}$ may be measured directly if only the height of the CG is required, in which case m_1 , m_2 , m_3 and m_4 are not needed.

6.6 Data presentation

Measured data and test results shall be presented in a test report as shown in Annex A.

7 Determination of CG height: Stable pendulum method

7.1 General

This section contains a detailed description of the stable pendulum method for determining vehicle CG height. Figure 2 is a diagram of the stable pendulum method for determining vehicle CG height. For the stable pendulum method, the CG of the combined vehicle and vehicle support platform system are below the pivot axis. This diagram shows the stable pendulum method in a pitch configuration, with a lateral pivot axis parallel to the road plane. The stable pendulum method can also be configured in a roll configuration, with a longitudinal pivot axis parallel to the road plane. The equations provided in this clause are derived from a static torque balance about the pivot axis. In this case, a static disturbance torque is applied to the system by hanging known masses at a known distance from the pivot axis.

A similar model and formulation of equilibrium equations can be used for the unstable pendulum method, except that the pivot axis is below the CG of the combined vehicle and vehicle platform system. For the unstable pendulum method, a static retarding torque is required to maintain the vehicle/platform system at any given tilt angle about the pivot axis. In this case, force measurements, made using a scale or load cell placed at a known distance from the pivot axis, are used to determine the torque required to balance the system. Equations similar to those presented in this section, but with mathematical sign changes on some of the terms, can be derived for the unstable pendulum method. By using similar levels of accuracy for the required measurements and equipment specifications, the overall accuracy of the unstable pendulum method is similar to that of the stable pendulum method.

Key

- h pivot height
- $h_{\rm v}$ vehicle's CG distance below the pivot axis
- $h_{\rm p}$ _platform's CG distance below the pivot axis
- $m_{\rm v}$ mass of the vehicle
- $m_{\rm p}~{\rm mass}$ of the platform including the restraint components
- θ tilt angle of the platform relative to the gravity vector (positive for the front of the vehicle pitched down, as shown above)

