INTERNATIONAL STANDARD

ISO 898-6

Second edition 1994-12-15

Mechanical properties of fasteners —

Part 6:

iTeh Spitch thread PREVIEW (standards.iteh.ai)

Caractér<u>istiques méca</u>niques des éléments de fixation https://standards.partie 6 a écrous avec charges d'épreuve spécifiées — Filetage à pas fin

Reference number ISO 898-6:1994(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

International Standard ISO 898-6 was prepared by Technical Committee ISO/TC 2, *Fasteners*, Subcommittee SC 1, *Mechanical properties of fasteners*.

ISO 898-6:1994

This second edition cancels⁵://andlardreplacesatalthetandfirst/sisedition3dd-5907-48d5-(ISO 898-6:1988), which has been technically revised 3e064c4/iso-898-6-1994

ISO 898 consists of the following parts, under the general title *Mechanical* properties of fasteners:

- Part 1: Bolts, screws and studs
- Part 2: Nuts with specified proof load values Coarse thread
- Part 5: Set screws and similar threaded fasteners not under tensile stresses
- Part 6: Nuts with specified proof load values Fine pitch thread
- Part 7: Torsional test and minimum torques for bolts and screws with nominal diameters 1 mm to 10 mm

© ISO 1994

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

Mechanical properties of fasteners —

Part 6:

Nuts with specified proof load values — Fine pitch thread

1 Scope

This part of ISO 898 specifies the mechanical properties of nuts with specified proof load values when — with specific mechanical requirements; tested at an ambient temperature range of \pm 10 °C to **RD PREVIEW** + 35 °C. Mechanical and physical properties will vary — with widths across flats as specified in ISO 272; with respect to temperature and property class. — with nominal heights greater than or equal to

Products conforming to the requirements of this part<u>98-6:1994</u> 0,5*d*¹; of ISO 898 are evaluated <u>only at the ambient tension datases</u> 0,5*d*¹; perature range and may not retain the specified <u>4c4/iso-898-6-1994</u> carbon steel or alloy steel (see note 1). physical properties at higher and lower temperatures.

At temperatures higher or lower than the ambient temperature range, a significant change in properties may occur. When fasteners are to be used above or below the ambient temperature range, it is the responsibility of the user to ensure that the mechanical and physical properties are suitable for his particular service conditions.

This part of ISO 898 applies to nuts

- with nominal thread diameters, *d*, from 8 mm up to and including 39 mm (fine pitch thread);
- of triangular ISO thread and with diameters and pitches in accordance with ISO 68 and ISO 262 (fine pitch thread);
- with diameter/pitch combinations in accordance with ISO 261 (fine pitch thread);

It does not apply to nuts requiring special properties such as

with thread tolerances 6H in accordance with

ISO 965-1 and 965-2 (see note 2);

- weldability;
- prevailing torque performance (see ISO 2320);
- corrosion resistance (see ISO 3506);
- ability to withstand temperatures above + 300 °C or below - 50 °C. (However, see note 1.)

NOTES

1 Nuts made from free-cutting steel should not be used above + 250 $^\circ\text{C}.$

2 With thread tolerances other or larger than 6H, a decrease in the stripping strength should be considered (see table 1).

¹⁾ In ISO 898:1988, the symbol D was used.

SO
SO

Nominal thread diameter	1	fest load, %	þ
d	Thr	ead tolerand	ces
mm	6H	7H	6G
8 <i>≤ d≤</i> 16	100	96	97,5
16 <i>< d</i> ≤ 39	100	98	98,5

 Table 1 — Reduction in thread strength

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 898. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 898 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards. ISO 965-2:1980, ISO general purpose metric screw threads — Tolerances — Part 2: Limits of sizes for general purpose bolt and nut threads — Medium quality.

ISO 4964:1984, Steel — Hardness conversions.

ISO 6157-2:—²⁾, Fasteners — Surface discontinuities — Part 2: Nuts with threads M5 to M39.

ISO 6506:1981, Metallic materials — Hardness test — Brinell test.

ISO 6507-1:1982, Metallic materials — Hardness test — Vickers test — Part 1: HV 5 to HV 100.

ISO 6508:1986, Metallic materials — Hardness test — Rockwell test (scales A - B - C - D - E - F - G - H - K).

3 Designation system

3.1 Nuts with nominal heights $\ge 0.8d$ (effective lengths of thread $\ge 0.6d$): Nuts of style 1 and style 2

ISO 68:1973, ISO general purpose screw threads $\overrightarrow{\mathbf{n}}$ Nuts with nominal heights $\ge 0.8d$ (effective lengths Basic profile.

cate the maximum appropriate property class of bolts ISO 261:1973, *ISO general purpose metric screwo* 898-6/1994 *threads* — *General plan.* https://standards.iteh.ai/catalog/standards/sist/039443dd-5907-48d5-

ISO 262:1973, ISO general purpose metric screw threads — Selected sizes for screws, bolts and nuts.

ISO 272:1982, Fasteners — Hexagon products — Widths across flats.

ISO 286-2:1988, *ISO system of limits and fits — Part 2: Tables of standard tolerance grades and limit deviations for holes and shafts.*

ISO 724:1993, *ISO general-purpose metric screw threads — Basic dimensions.*

ISO 898-2:1992, Mechanical properties of fasteners — Part 2: Nuts with specified proof load values — Coarse thread.

ISO 965-1:1980, *ISO general purpose metric screw threads* — *Tolerances* — *Part 1: Principles and basic data.*

95bc-a5fc73e064c Failure8 of Ithreaded fasteners due to over-tightening
can occur by bolt shank fracture or by stripping of the
threads of the nut and/or bolt. Shank fracture is sud-
den and therefore easily noticed. Stripping is gradual
and therefore difficult to detect and this introduces
the danger of partly failed fasteners being left in as-
semblies.

It would therefore be desirable to design threaded connections so that their mode of failure would always be by shank fracture but, unfortunately, because of the many variables which govern stripping strength (nut and bolt material strengths, thread clearances, across-flats dimensions, etc.), nuts would have to be excessively thick to guarantee this mode in all cases.

A bolt or screw of thread diameter 8 mm to 39 mm assembled with a nut of the appropriate property class, in accordance with table 2, is intended to provide an assembly capable of being tightened to the bolt proof load without thread stripping occurring.

²⁾ To be published.

	Matin	g bolts	Νι	uts
	Iviatin	g bons	style 1	style 2
Property class of nut	Property class	Nominal thread diameter range		diameter range
		mm		m
5	3.6; 4.6; 4.8		<i>d</i> ≤ 39	
	5.6; 5.8	<i>u</i> < 00	u < 00	
6	6.8	<i>d</i> ≤ 39	<i>d</i> ≼ 39	
8	8.8	<i>d</i> ≤ 39	<i>d</i> ≤ 39	<i>d</i> ≤ 16
10	10.9	<i>d</i> ≤ 39	<i>d</i> ≼ 16	<i>d</i> ≤ 39
12	12.9	<i>d</i> ≤ 16		<i>d</i> ≤ 16

Table 2 — Designation system for nuts with nominal heights $\ge 0.8d$

NOTE — In general, nuts of a higher property class can replace nuts of a lower property class. This is advisable for a bolt/nut assembly going into a stress higher than the yield stress or the stress under proof load of the bolt.

iTeh STANDARD PREVIEW (standards.iteh.ai)

However, should tightening beyond bolt proof load take place, the nut design is intended to ensure at 98-6:19 indicates the nominal stress under proof load on a least 10 % of the over-tightened assemblies fail and a stress the nominal stress under proof load on a through bolt breakage in order to warn the user that 4c4/iso the loadability of a bolt-nut assembly is reduced in the installation practice is not appropriate.

NOTE 3 For more detailed information on the strength of screw thread assemblies and for the styles of nuts, see ISO 898-2:1992, annex A.

3.2 Nuts with nominal heights $\ge 0.5d$ and < 0.8d (effective heights of thread $\ge 0.4d$ and < 0.6d)

Nuts with nominal heights $\ge 0.5d$ and < 0.8d (effective height of thread $\ge 0.4d$ and < 0.6d) are desig-

indicates the nominal stress under proof load on a hardened test mandrel, while the first indicates that the loadability of a bolt-nut assembly is reduced in comparison with the loadability on a hardened test mandrel and also in comparison with a bolt-nut assembly described in 3.1. The effective loading capacity is not only determined by the hardness of the nut and the effective height of thread but also by the tensile strength of the bolt with which the nut is assembled. Table 3 gives the designation system and the stresses under proof load of the nuts. Proof loads are shown in table 6. A guide for minimum expected stripping strengths of the joints when these nuts are assembled with bolts of various property classes is shown in table 7.

Table 3 — Designation system and stresses under proof load for nuts with nominal heights $\ge 0,5d$ and < 0,8d

Property class of nut	Nominal stress under proof load N/mm ²	Actual stress under proof load N/mm ²
04	400	380
05	500	500

4 Materials

Nuts shall be made of steel conforming to the chemical composition limits specified in table 4. The chemical composition shall be analysed in accordance with relevant International Standards.

Table 4 — Limits of chemical composition

Nuts of property classes 05, 8 (style 1), 10 and 12 shall be hardened and tempered.

5 Mechanical properties

When tested by the methods described in clause 8, the nuts shall have the mechanical properties set out in table 5.

6 Proof load values

Propert	y class		ical com check an Mn min.	alysis), 9 P	AN S	Proof load values are given in table 6. ARD PREVIEW The nominal stress area, A_s , is calculated as follows: ards.iteh.ai $A_s = \frac{\pi}{4} \left(\frac{d_2 + d_3}{2} \right)^2$
5 ¹⁾ ; 6		0,50		0,060	0,150	$A_{\rm s} = \frac{\pi}{4} \left(\frac{\pi 2 + \pi_{\rm s}}{2} \right)$
8 2)	04 ¹⁾	0,58	0 ;25: //s	ta o;066 s.i	teloai/50ta	og/standwhere t/039443dd-5907-48d5-
10 ²⁾	05 ²⁾	0,58	0,30	0,048	0,058	$\frac{6064c4}{l_{2}}$
12 ²⁾		0,58	0,45	0,048	0,058	thread;
1) Nuts of from free- tween the cases, the lead conte	cutting st purchase following	eel unles and th maximur	s otherv e manufa n sulfur,	vise agre acturer. I	ed be- n such	d_3 is the minor diameter of the external thread $d_3 = d_1 - \frac{H}{6}$ where
sulfur (2) Alloyin	0,34 %; ph g element					$d_1^{(1)}$ is the basic minor diameter of the external thread;

llioying elem develop the mechanical properties of the nuts.

 H_{-} is the height of the fundamental triangle of the thread.

^{*)} See ISO 724.

Nominal							Pronertv class	class							
thread		Ó	04				19					Ľ			
alameter												'			
d	Stress under proof load, S _o	Vickers hardness, ⊟V	ers ss, HV	Nut		Stress under proof load, S	Vickers hardness. HV	ers is, HV	Nut	¥	Stress under proof load. S	Vickers	Vickers	Nut	t
шш	N/mm ² en	STI.A	max.	Atate	style	E N/mm2	min.	тах.	state	style	N/mm ²	min.	max.	state	style
8≤ <i>d</i> ≤ 16	380	188- 0	200	NOTB	4 mil	EOO	626	363	0T2)	t tid	690	175	LUC	NOT1)	,
$16 < d \leq 39$	200	20					7/7	C			720	190	202		-
			ISO	NO 808 6-1007	77										
Nominal thread	https://stand	ards. iteh. a 95bo	ai/catalog	s.iteh.ai/catalog/standards/sist/0394430 95bc6a5fc73e064c4/iso-898-6-[994	/sist/0394 898-6-19	https://standards.iteh.ai/catalog/standards/sist/039443dd-5907-48d. Property class 95b .6 a5ft73e064c4/iso-898-6- [994	Property	class		œ					
q	Stress under proof load S	Vickers hard-	hard-	Nut		Stress under proof load S	Vickers hard-	hard-	Nut	t	Stress under	Vickers hard-	s hard-	Nut	t
шш	N/mm ²	min.	max.	state	style	N/mm ²	min.	max.	state	style	N/mm ²	min.	max.	state	style
8≼ <i>d</i> ≤ 10	770	100										L			2 65
$10 < d \leqslant 16$	780	0	000			000	067	C 11 C	0T3/	7	068	ဌန	302		7
16 < <i>d</i> ≤ 33	870	223	700			1 030	ц	505	7	•					
$33 < d \leq 39$	930	CC2			L	1 090	067					I	1		1
Nominal							Property class	class							
diameter					10							12	8		
q	Stress under proof load, S ₆	Vickers hard- ness, ⊟∨	hard- ∺√	Nut		Stress under proof load, <i>S</i> ₆	Vickers hard- ness, ⊭∨	hard- ∺√	Nut	Ŧ	Stress under proof load, S_{c}	Vickers hard- ness. HV	s hard- HV	Nut	ť
шш	N/mm ²	min.	max.	state	style	N/mm ²	min.	max.	state	style	N/mm ²	min.	max.	state	style
$8 \leqslant d \leqslant 10$	1 100	205	363	OT2)		1 056	260				0 7 7	LOC		1640	
$10 < d \leqslant 16$	1 110	007	2	5	-	000		353	QT ²⁾	2	007 -	667	5G5		N
$16 < d \leq 39$						1 080	260				I	1	1		1
NOTE — Minimum hardne mandatory but is provided not be cause for rejection	NOTE — Minimum hardness is mandatory only for heat-treated nuts and nuts too large to be proof-load tested. For all other nuts, minimum hardness is not mandatory but is provided for guidance only. For nuts which are not hardened and tempered, and which satisfy the proof-load test, minimum hardness shall not be cause for rejection.	s manda guidance	tary anly e only. Fr	<i>y</i> for heat or nuts w	-treated hich are	nuts and nuts to not hardened a	oo large 1 nd temp	to be pr ered, an	oof-load d which	tested. I satisfy	For all other nu the proof-load t	ts, minir est, min	num har imum h	rdness is ardness	not shall
 NQT = Not 2) QT = Quent 	NOT = Not quenched and tempered. ΩT = Quenched and tempered.	npered. d.													

Table 5 — Mechanical properties

3) Nuts with nominal thread diameters d > 16 mm may be quenched and tempered at the discretion of the manufacturer.

	Nominal					Property class				
Thread	stress area of mandrel	04	05	5	9	8		10		12
$d \times P$	As iT	eh STA	STANDARI	D PREV	/IEW Pro	PREVIEW Proof load $(A_{s} \times S_{p})$	(d			
	mm ²	(stal	standards.iteh.ai	iteh ai)	style 1	style 1	style 2	style 1	style 2	style 2
M8 × 1	39,2	14 900	I39 600 -63	<u>994</u> 27 000	30 200	37 400	34 900	43 100	41 400	47 000
M10 × 1	64, 5https://	stan24 c500ch.ai	cata32/2000dards/sis4/13600/3dd	s/sis4/4350013dd	-59049-4006-	61 600	57 400	71 000	68 000	77 400
M10 × 1,25	61,2	23 300 ⁰⁰⁻⁸	5 lc 736 606 4/180 - 89 4 40 2004	-89845004	47 100	58 400	54 500	67 300	64 600	73 400
M12 × 1,25	92,1	35 000	46 000	63 500	71 800	88 000	82 000	102 200	97 200	110 500
M12 × 1,5	88,1	33 500	44 000	60 800	68 700	84 100	78 400	97 800	92 900	105 700
M14 × 1,5	125	47 500	62 500	86 300	97 500	119 400	111 200	138 800	131 900	150 000
M16 × 1,5	167	63 500	83 500	115 200	130 300	159 500	148 600	185 400	176 200	200 400
M18 × 1,5	215	81 700	107 500	154 800	187 000	221 500	I		232 200	1
M18 × 2	204	77 500	102 000	146 900	177 500	210 100		1	220 300	I
M20 × 1,5	272	103 400	136 000	195 800	236 600	280 200	ļ	ł	293 800	I
M20 × 2	258	000 86	129 000	185 800	224 500	265 700			278 600	
M22 × 1,5	333	126 500	166 500	239 800	289 700	343 000	I	1	359 600	
M22 × 2	318	120 800	159 000	229 000	276 700	327 500		1	343 400	I
M24 × 2	384	145 900	192 000	276 500	334 100	395 500			414 700	
M27 × 2	496	188 500	248 000	351 100	431 500	510 900	I	1	535 700	I
M30 × 2	621	236 000	310 500	447 100	540 300	639 600	ļ		670 700	
M33 × 2	761	289 200	380 500	547 900	662 100	783 800	1	- -	821 900	1
M36 × 3	865	328 700	432 500	622 800	804 400	942 800	I]	934 200	I
M39 × 3	1 030	391 400	515 000	741 600	957 900	1 123 000	 		1 112 000	-

Table 6 — Proof load values

7 Failure loads for nuts with nominal heights of $\ge 0.5d$ and < 0.8d

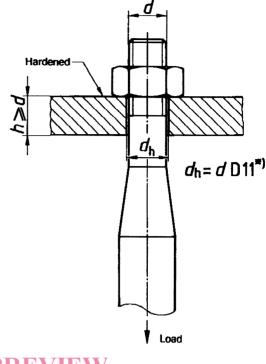
The values of failure loads given for guidance in table 7 apply to different bolt classes. Bolt stripping is the expected failure mode for lower strength bolts, while nut stripping can be expected for bolts of higher property classes.

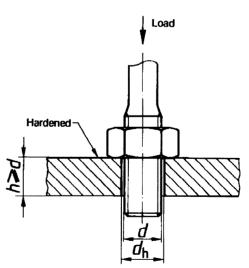
Table 7 —	Minimum	stripping	strength	າ of nuts
as a per	centage of	the proof	load of	bolts

Property class of		stripping s e of the pro property	oof load of l	
the nut	6.8	8.8	10.9	12.9
04	85	65	45	40
05	100	85	60	50

8 Test methods

8.1 Proof load test iTeh STANDARD PREVIEW


The proof load test shall be used wherever the ca-ds.iteh.ai) pacity of available testing equipment permits, and shall be the referee method. ISO 898-6:1994


The nut shall be assembled://omdardhardenedalandandards/sist/039443dd-5907-48d5threaded test mandrel as shown in figures of and 24c4/iso-898-6-1994 For referee purposes, the axial tensile test is decisive.

The proof load shall be applied against the nut in an axial direction, and shall be held for 15 s. The nut shall resist the load without failure by stripping or rupture, and shall be removable by the fingers after the load is released. If the thread of the mandrel is damaged during the test, the test should be discarded. It may be necessary to use a manual wrench to start the nut in motion. Such wrenching is permissible provided that it is restricted to one half turn and that the nut is then removable by the fingers.

The hardness of the test mandrel shall be 45 HRC minimum.

Mandrels used shall be threaded to tolerance class 5h6g except that the tolerance of the major diameter shall be the last quarter of the 6g range on the minimum material side.

