INTERNATIONAL STANDARD

First edition 2011-08-15

Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method for cyclic bending fatigue of porous ceramics at room temperature

Céramiques techniques — Méthode d'essai de fatigue par flexion cyclique des céramiques poreuses à température ambiante

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 28704:2011</u> https://standards.iteh.ai/catalog/standards/sist/2968efba-6986-407d-82ca-7d5314c587dc/iso-28704-2011

Reference number ISO 28704:2011(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 28704:2011</u> https://standards.iteh.ai/catalog/standards/sist/2968efba-6986-407d-82ca-7d5314c587dc/iso-28704-2011

COPYRIGHT PROTECTED DOCUMENT

© ISO 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Page

Contents

Forewo	ordi	v
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4 4.1 4.2 4.3 4.4 4.5 4.6	Testing machine and equipment Testing machine Loading precision Test fixture Micrometer callipers for measurement of external dimensions Dial gauge Vernier callipers	3 3 3 4 4 4 4
5 5.1 5.2	Test piece	5 5 5
6 6.1 6.2 6.3 6.4 6.5	Test method Waveform of loading stress Loading method Number of cycles for interruption Reuse of test piece Recommended test procedure in fatigue test	555666
6.6 7	Test environment (standards.iteh.ai)	6
7.1 7.2 7.3	Maximum stress. Number of cycles to failure S-N plot Tost report	6 7 7 7
0	lest leholt	1

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 28704 was prepared by Technical Committee ISO/TC 206, Fine ceramics.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 28704:2011</u> https://standards.iteh.ai/catalog/standards/sist/2968efba-6986-407d-82ca-7d5314c587dc/iso-28704-2011

Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method for cyclic bending fatigue of porous ceramics at room temperature

1 Scope

This International Standard spedifies a test method for determining the cyclic four-point bending fatigue of porous ceramics in air at room temperature.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 463, Geometrical Product Specifications (GPS) — Dimensional measuring equipment — Design and metrological characteristics of mechanical dial gauges

ISO 1101, Geometrical Product Specifications (GPS) — Geometrical tolerancing — Tolerancing of form, orientation, location and runeout **STANDARD PREVIEW**

ISO 3611, Geometrical product specifications (GPS) — Dimensional measuring equipment: Micrometers for external measurements — Design and metrological characteristics

ISO 3599, Vernier callipers reading to 0,1 and 0,05 mm¹¹

https://standards.iteh.ai/catalog/standards/sist/2968efba-6986-407d-82ca-

ISO 4287, Geometrical Product Specifications (GPS)-287Surface texture: Profile method — Terms, definitions and surface texture parameters

ISO 14704, Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method for flexural strength of monolithic ceramics at room temperature

ISO 20507, Fine ceramics (advanced ceramics, advanced technical ceramics) — Vocabulary

ISO 22214, Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method for cyclic bending fatigue of monolithic ceramics at room temperature

ISO 80000-1, Quantities and units — Part 1: General

3 Terms and definitions

For the purposes of this document, the terms and definitions in ISO 20507 and the following apply.

3.1

porous fine ceramics

ceramics with a porosity of typically 30 % to 60 % and a pore diameter of 1 μ m to 100 μ m, for applications such as filters, catalyst carriers, humidity sensors or molecular sieves, excluding structured honeycomb cellular channels

3.2

fatigue test

test wherein a test piece is subjected to repeated stressing to a set stress level, and the number of cycles to fracture is determined

3.3

four-point bending stress

maximum value of stress generated in flexure in a bar-shaped test piece when supported at two support points near its ends and loaded symmetrically by two loading points between them

3.4

cyclic stress

stress which is simply and cyclically loaded between a specific maximum value and a specific minimum value (see Figure 1)

3.5

maximum stress

 $\sigma_{\rm max}$

maximum value of cyclic stress (see Figure 1)

3.6

minimum stress

 $\sigma_{\rm min}$

minimum value of cyclic stress (see Figure 1)

Key

- X time
- Y stress
- 1 $\sigma_{\rm min}$
- 2 $\sigma_{\rm max}$

Figure 1 — Cyclic stress

3.7

minimum to maximum stress ratio

R

ratio of minimum stress to maximum stress

$$R = \frac{\sigma_{\min}}{\sigma_{\max}}$$

3.8 number of cycles

п

number of cycles of stress in the fatigue test

3.9

number of cycles to failure

N number of cycles of stress until fatigue failure occurs

(1)

3.10

failure time

loading time until fatigue failure occurs

3.11

S-N plot

diagram wherein the maximum stress, S, is taken as an ordinate and the fracture number of cycles, N, is taken as an abscissa

NOTE An example is given in Figure 2, where the number attached to the data point indicates the number of test pieces and the data with a right-pointing arrow indicates a "run-out".

Υ maximum stress (MPa)

X2 time to failure (s)

Key

2 number of superimposed points

Testing machine and equipment 4

4.1 Testing machine

A testing machine shall be so constructed that a cyclic bending stress can be applied to a test piece, and a force or moment other than the cyclic bending stress is not applied. The testing machine shall be equipped with apparatus for measuring or indicating the maximum and minimum load, apparatus capable of measuring the number of cycles until the test piece is broken, and a mechanism wherein when the testing machine is stopped for reasons of power failure or others, its automatic reactivation is prevented.

4.2 Loading precision

The fluctuation of the maximum stress shall be within ± 1 % of the chosen value, and that of the minimum to maximum stress ratio shall be within ± 5 % thereof, as specified in ISO 22214.

4.3 Test fixture

A four-point flexure fixture of the type and function shown in ISO 14704 shall be used (see Figure 3). The use of a semi- or fully-articulating fixture is required to prevent torsional deformation. Bearings supporting the test piece at the support points and loading the test piece at the loading points shall be of equal shape and have a length exceeding the width of the test piece. The material of the bearings shall have an elastic modulus of at least 140 GPa, and shall be free from plastic deformation; the bearing shall never break during the test. The radius of curvature at the tip of the bearings shall be 2,0 mm to 3,0 mm, and their surface roughness, Ra, as specified in ISO 4287, shall be not greater than 0,40 µm.

The test piece and/or its bearings may move during the test. Precautions should be taken where possible to minimise such movement without restricting the flexural displacement, for example, by providing support rollers with restraint against a stop in the correct position.

Key

2

- 1 test piece
- <u>ISO 28704:2011</u> https://standards.iteh.ai/catalog/standards/sist/2968efba-6986-407d-82ca-7d5314c587dc/iso-28704-2011
- 3 internal support

external support

- *D* roller diameter (4 to 6 mm)
- L outer span ($L = 60 \text{ mm} \pm 0.5 \text{ mm}$)
- *l* inner span ($l = 30 \text{ mm} \pm 0.5 \text{ mm}$)

Figure 3 — Four-point flexure fixture

4.4 Micrometer callipers for measurement of external dimensions

Micrometer callipers for the measurement of external dimensions with the same accuracy of 0,01 mm as specified in ISO 3611, or better, shall be used.

4.5 Dial gauge

Dial gauges with the same accuracy of minimum reading of 0,01 mm as specified in ISO 463, or better, shall be used.

4.6 Vernier callipers

Vernier callipers with the same accuracy of minimum reading of 0,05 mm as specified in ISO 3599, or better, shall be used.

5 Test piece

5.1 Test piece size

The shape of a test piece shall be a beam of uniform rectangular cross-section. Its standard dimensions shall be 70 mm \pm 0,5 mm in total length, 8,0 mm \pm 0,1 mm in width, and 6,0 mm \pm 0,1 mm in thickness. The parallelism between the upper and lower surfaces of the test piece shall be better than 0,02 mm, as specified in ISO 1101. The longer edges shall be rounded or chamfered by an amount of 0,1 mm to 0,3 mm, as given in Figure 4. This chamfering shall be carried out with caution so as not to introduce defects resulting in a fracture initiation site. The chamfering is not necessary when the grain size of material is larger than 0,1 mm. Before carrying out the test, the width and thickness of the test piece shall be measured to the nearest 0,1 mm by using micrometer callipers (4.4).

If, for any reason, different test piece dimensions have to be used, they shall be stated in the test report.

Key

- L_{T} length of test piece (L_{T} = 70 mm ± 0,5 mm)
- *b* width of test piece ($b = 80 \text{ pm} \pm 9.1 \text{ mm}$) NDARD PREVIEW
- d thickness of test piece ($d = 6,0 \text{ mm} \pm 0,1 \text{ mm}$)
- c chamfer or rounding (c = 0,1 mm to 9,3 mm) clards.iteh.ai)

Figure 4 — Test piece dimensions and chamfering of ridge line

https://standards.iteh.ai/catalog/standards/sist/2968efba-6986-407d-82ca-7d5314c587dc/iso-28704-2011

5.2 Test piece preparation

The surface shall be finished by grinding with a wheel of grain size 20 μ m or smaller. The contamination by wax, if any, should be removed by organic solution or by heating at 773 K (500 °C) for 1 h to evaporate wax.

6 Test method

6.1 Waveform of loading stress

The waveform shall be sinusoidal and the ratio of minimum to maximum stress R = 0,1. The frequency shall be selected by agreement between parties, with 20 Hz being recommended. For other cases, the waveform of the loading stress shall be stated in the test report. A series of tests shall be carried out using the same stress waveform.

6.2 Loading method

6.2.1 The distances between internal support points and external support points shall be measured by a calliper before the tests.

6.2.2 The test piece shall be centrally positioned in the test fixture.

6.2.3 The number of cycles from the start of loading to the end of adjusting to a specific cyclic loading stress shall be as few as possible. In this case, the stress during initial adjusting shall not exceed the specific maximum stress.