INTERNATIONAL STANDARD

ISO 248-1

First edition 2011-10-15

Rubber, raw — Determination of volatilematter content —

Part 1: Hot-mill method and oven method

Caoutchouc brut — Détermination des matières volatiles —

iTeh STPartie 1: Méthode par mélangeage à chaud et méthode par étuvage

(standards.iteh.ai)

ISO 248-1:2011 https://standards.iteh.ai/catalog/standards/sist/156f39ab-86bd-42f0-9201-8c333b14af24/iso-248-1-2011

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 248-1:2011 https://standards.iteh.ai/catalog/standards/sist/156f39ab-86bd-42f0-9201-8c333b14af24/iso-248-1-2011

COPYRIGHT PROTECTED DOCUMENT

© ISO 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Cont	ents	Page
Forewo	ord	
1	Scope	
2	Normative references	1
3	Terms and definitions	2
4	Principle	2
5	Hot-mill method	2
6	Oven method	4
7	Precision	6
8	Test report	7
Annex A (informative) Selection of appropriate test method		
Annex B (normative) Homogenization		9
	C (informative) Precision	
Bibliography iTeh STANDARD PREVIEW		13
	(standards.iteh.ai)	

ISO 248-1:2011 https://standards.iteh.ai/catalog/standards/sist/156f39ab-86bd-42f0-9201-8c333b14af24/iso-248-1-2011

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 248-1 was prepared by Technical Committee ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 2, *Testing and analysis*.

This first edition cancels and replaces ISO 248:2005, which has been technically revised.

ISO 248 consists of the following parts, under the general title *Rubber*, *raw* — *Determination of volatile-matter content*:

ISO 248-1:2011

- Part 1: Hot-mill method and oven method 8c333b14af24/iso-248-1-2011
- Part 2: Thermogravimetric methods using an automatic analyser with an infrared drying unit

Rubber, raw — Determination of volatile-matter content —

Part 1:

Hot-mill method and oven method

WARNING — Persons using this part of ISO 248 should be familiar with normal laboratory practice. This part of ISO 248 does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions.

IMPORTANT — Certain procedures specified in this part of ISO 248 might involve the use or generation of substances, or the generation of waste, that could constitute a local environmental hazard. Reference should be made to appropriate documentation on safe handling and disposal after use.

1 Scope iTeh STANDARD PREVIEW

- **1.1** This part of ISO 248 specifies two methods for the determination of volatile-matter content in raw rubbers by using a hot mill or an oven.
- **1.2** The methods are applicable to the <u>determination</u> of the volatile-matter content in the "R" group of rubbers listed in ISO 1629. These are rubbers having an unsaturated carbon chain, for example natural rubber and synthetic rubbers derived at least partly from diolefins. The methods can also be applicable to other raw rubbers, but in these cases it is necessary to demonstrate that the change in mass is due solely to loss of actual volatile matter and not to rubber degradation.
- **1.3** The hot-mill method is not applicable to natural rubber, to synthetic rubbers which are too difficult to handle on a hot mill or to synthetic rubbers in powder or chip form.
- **1.4** The test methods do not necessarily give identical results. Therefore, in cases of dispute, the oven method, procedure A, is the reference method.

NOTE The applicability of each test method to various types of rubber is summarized in Annex A.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1629, Rubber and latices — Nomenclature

ISO 1795, Rubber, raw natural and raw synthetic — Sampling and further preparative procedures

ISO 2393, Rubber test mixes — Preparation, mixing and vulcanization — Equipment and procedures

© ISO 2011 – All rights reserved

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 1795 and the following apply.

3.1

test portion

quantity of rubber taken from the test sample or laboratory sample for the purpose of a single specific test, for example the amount actually weighed out for a single determination of the volatile-matter content

4 Principle

4.1 Hot-mill method

A test portion is sheeted out on a heated mill until all volatile matter is driven off. The loss in mass during milling is calculated and expressed as the volatile-matter content. If the test portion is homogenized in accordance with Annex B before drying, the loss in mass during the homogenization is included in the calculation.

4.2 Oven method

A test portion is dried in an oven to constant mass. The loss in mass is calculated and expressed as the volatile-matter content. If the test portion is homogenized in accordance with Annex B before drying, the loss in mass during the homogenization is included in the calculation.

PREVIEW

5 Hot-mill method

(standards.iteh.ai)

5.1 General

ISO 248-1:2011

https://standards.iteh.ai/catalog/standards/sist/156f39ab-86bd-42f0-9201-

- **5.1.1** Two procedures are specified, as follows: $\frac{8c333b14af24/iso-248-1-2011}{8c333b14af24/iso-248-1-2011}$
- Hot-mill method, procedure A: A test sample is homogenized using a laboratory mill, and a test portion from the homogenized test sample is dried to constant mass using a hot mill.
- Hot-mill method, procedure B: A test portion is dried to constant mass using a hot mill.

NOTE Procedure B is a simplified one which does not include a homogenization process.

- **5.1.2** When the sample is flaky or becomes sticky on the hot mill, making weighing difficult or impossible, the oven method shall be used.
- **5.1.3** The number of test portions shall be agreed between the interested parties.

5.2 Apparatus

- **5.2.1 Mixing mill**, complying with the requirements of ISO 2393.
- **5.2.2 Balance**, capable of weighing to the nearest 0,1 g.

5.3 Procedure

5.3.1 Hot-mill method, procedure A

5.3.1.1 Take a test sample of about 250 g from the laboratory sample in accordance with ISO 1795 and homogenize it in accordance with Annex B. Weigh to the nearest 0,1 g before and after homogenization

(masses m_1 and m_2 , respectively). Cut test portions needed for other chemical and physical tests from the homogenized test sample, if necessary.

- **5.3.1.2** Adjust the clearance of the mill rolls to 0,25 mm \pm 0,05 mm, using lead strips as specified in ISO 2393. Maintain the surface temperature of the rolls at 105 °C \pm 5 °C.
- **5.3.1.3** Pass a weighed test portion (mass m_3), preferably of 100 g or more, taken from the homogenized test sample repeatedly through the mill for 4 min. Do not allow the test portion to band and take care to prevent any loss of material. Weigh the test portion to the nearest 0,1 g. Pass the test portion through the mill for an additional 2 min and reweigh. If the masses at the end of the 4 min and 6 min periods differ by less than 0,1 g, calculate the volatile-matter content.

If not, continue passing the test portion through the mill for 2 min periods until the mass does not decrease by more than 0,1 g between successive weighings (final mass m_4). Before each weighing, allow the test portion to cool to room temperature in a desiccator.

5.3.2 Hot-mill method, procedure B

- **5.3.2.1** Take a test portion of about 250 g from the laboratory sample and weigh to the nearest 0,1 g (mass m_5).
- **5.3.2.2** Adjust the clearance of the mill rolls to 0,25 mm \pm 0,05 mm, using lead strips as specified in ISO 2393. Maintain the surface temperature of the rolls at 105 °C \pm 5 °C. Pass the test portion through the mill not less than twice, then reweigh to the nearest 0,1 g, followed by passing through the mill not less than twice again and reweighing. **TANDARD PREVIEW**
- **5.3.2.3** If the difference in mass of the test portion before and after it is passed through the rolls is less than 0,1 g, the test portion is considered to be well dried. If it is not well dried, continue passing the test portion twice through the rolls until the mass difference is less than 0,1 g (final mass m_6).

ISO 248-1:2011

NOTE Cooling in adesiccator before weighing is desirable /156f39ab-86bd-42f0-9201-

8c333b14af24/iso-248-1-2011

5.4 Expression of results

5.4.1 Hot-mill method, procedure A

The volatile-matter content w_1 is given, as a percent mass fraction, by the formula:

$$w_1 = \left(1 - \frac{m_2 \times m_4}{m_1 \times m_3}\right) \times 100$$

where

 m_1 is the mass, in grams, of the test sample before homogenization;

 m_2 is the mass, in grams, of the test sample after homogenization;

 m_3 is the mass, in grams, of the test portion before milling;

 m_4 is the mass, in grams, of the test portion after milling.

5.4.2 Hot-mill method, procedure B

The volatile-matter content w_2 is given, as a percent mass fraction, by the following formula:

$$w_2 = \frac{m_5 - m_6}{m_5} \times 100$$

where

 m_5 is the mass, in grams, of the test portion before milling;

 m_6 is the mass, in grams, of the test portion after milling.

6 Oven method

6.1 General

- **6.1.1** Two procedures are specified, as follows:
- Oven method, procedure A: A test sample is homogenized using a laboratory mill, and a test portion taken from the homogenized test sample is dried in an oven to constant mass. If the sample is in powder form or impossible to weigh before and after homogenization, a test portion shall simply be dried, without carrying out the homogenization process.

 ANDARD PREVIEW
- Oven method, procedure B: A test sample is sheeted out using a laboratory mill, and a test portion taken from the sheeted test sample is dried in an oven for 1 h. If the sample is in powder form or is difficult to pass through the mill, the test portion shall simply be dried, without carrying out the sheeting process. This procedure is only applicable to synthetic rubbers since natural rubber requires homogenization.

https://standards.iteh.ai/catalog/standards/sist/156f39ab-86bd-42f0-9201-

6.1.2 The number of test portions shall be agreed between the interested parties.

6.2 Apparatus

- **6.2.1** Oven, ventilated, preferably of the air-circulation type, capable of being maintained at 105 $^{\circ}$ C \pm 5 $^{\circ}$ C.
- **6.2.2 Balance**, capable of weighing to the nearest 0,1 mg.
- **6.2.3 Mixing mill**, complying with the requirements of ISO 2393.

6.3 Procedure

6.3.1 Oven method, procedure A

6.3.1.1 Natural rubber

- **6.3.1.1.1** Take a test sample of about 600 g from the laboratory sample in accordance with ISO 1795 and homogenize it in accordance with Annex B. Weigh the test sample to the nearest 0,1 g before and after this homogenization (masses m_7 and m_8 , respectively). Allow to cool to room temperature before the final weighing. Cut test portions needed for other chemical and physical tests from the homogenized test sample, if necessary.
- **6.3.1.1.2** Take a test portion of about 10 g from the homogenized test sample and weigh it to the nearest 1 mg (mass m_9).

- **6.3.1.1.3** Pass the test portion twice through the mill with the rolls set at 70 $^{\circ}$ C \pm 5 $^{\circ}$ C and with a mill opening which will produce a sheet of less than 2 mm thickness.
- **6.3.1.1.4** Dry the test portion for 1 h in the oven, maintained at 105 °C \pm 5 °C, with the ventilators open and with the air-circulating fan, if fitted, switched on. Arrange the test portion so as to present the largest possible surface area to the hot air. Allow to cool to room temperature in a desiccator and weigh. Repeat the heating for further 30 min periods until the mass does not decrease by more than 1 mg between successive weighings (final mass m_{10}).
- **6.3.1.1.5** If the sample is in powder form, take a test portion of about 10 g at random and place it on a clean watch-glass or a clean aluminium tray to facilitate weighing. Weigh it to the nearest 1 mg (mass m_9). Dry the test portion in accordance with 6.3.1.1.4 and weigh to the nearest 1 mg (final mass m_{10}).

6.3.1.2 Synthetic rubber

- **6.3.1.2.1** Take a test sample of about 250 g from the laboratory sample in accordance with ISO 1795 and homogenize it in accordance with Annex B. Weigh the test sample to the nearest 0,1 g before and after this homogenization (masses m_7 and m_8 , respectively). Cut test portions needed for other chemical and physical tests from the homogenized test sample, if necessary.
- **6.3.1.2.2** Take a test portion of about 10 g from the homogenized test sample and weigh it to the nearest 1 mg (mass m_9).
- **6.3.1.2.3** Pass the test portion twice through the mill with the rolls set at 70 $^{\circ}$ C \pm 5 $^{\circ}$ C and with a mill opening which will produce a sheet of less than 2 mm thickness.
- **6.3.1.2.4** When sheeting is impossible, take a test portion of about 10 g from the homogenized test sample and cut it by hand into small cubes with edges of 2 mm to 5 mm. Place the cubes on a clean watch-glass or a clean aluminium tray to facilitate weighing. Weigh to the nearest 1 mg (mass m_9).

ISO 248-1:2011

- **6.3.1.2.5** Dry the test sportion in accordance with $6.13 \cdot 14.4$ and weigh to the nearest 1 mg (final mass m_{10}). $8c_{333}b_{14}a_{12}4/is_{12}c_{24}b_{12}c_{24}c_{13}c_{24}c_{14$
- **6.3.1.2.6** If it is difficult to weigh the test portion before and after the homogenization process because it sticks to the roll surfaces, take a test portion of about 10 g directly from the laboratory sample and cut it by hand into small cubes with edges of 2 mm to 5 mm. Place the cubes on a clean watch-glass or a clean aluminium tray to facilitate weighing. Weigh to the nearest 1 mg (mass m_9). Dry the test portion in accordance with 6.3.1.1.4 and weigh to the nearest 1 mg (final mass m_{10}).
- **6.3.1.2.7** If the sample is in powder form, take a test portion of about 10 g at random and place it on a clean watch-glass or a clean aluminium tray to facilitate weighing. Weigh to the nearest 1 mg (mass m_9). Dry the test portion in accordance with 6.3.1.1.4 and weigh to the nearest 1 mg (final mass m_{10}).

6.3.2 Oven method, procedure B

- **6.3.2.1** Take a test sample of about 250 g and pass it through the mill with the surface temperature of the rolls adjusted to about 30 °C and the roll clearance to 0,25 mm \pm 0,05 mm to obtain a thin sheet. From the sheeted test sample, take two test portions of about 50 g and weigh each to the nearest 10 mg (mass m_{11}). Dry the test portions for 1 h in the oven, maintained at 105 °C \pm 5 °C. Remove the test portions from the oven and cool to room temperature in a desiccator. Reweigh to the nearest 10 mg (mass m_{12}).
- **6.3.2.2** If the sample is in powder form or is impossible to sheet because it sticks to the roll surfaces or because it is flaky, take two test portions of about 10 g directly from the laboratory sample. Cut the test portions by hand into small cubes with edges of 2 mm to 5 mm, if necessary. Place each test portion in a tared clean aluminium tray of 15 mm depth and 60 mm diameter, or of similar shape, and weigh to the nearest 1 mg (mass m_{11}). Place the trays containing the test portions in the oven, maintained at 105 °C \pm 5 °C, for 1 h. Remove the trays from the oven and allow to cool in a desiccator to room temperature. Reweigh to the nearest 1 mg (mass m_{12}).