INTERNATIONAL STANDARD

IEC 60747-16-2

First edition 2001-03

Semiconductor devices -

Part 16-2: Microwave integrated circuits – Frequency prescalers

iTeh STANDARD PREVIEW

Dispositifs à semiconducteurs +)

Partie 16-2: IEC 60747-16-2:2001 https://**Circuits**hintégrésahyperfréquences2-4822-9709-Diviseurs préalables de fréquence

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

- IEC Web Site (www.iec.ch)
- Catalogue of IEC publications ARD PREVIEW

The on-line catalogue on the IEC web site (www.iec.ch/catlg-e.htm) enables you to search by a variety of criteria including text searches, technical committees and date of publication. On-line information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

https://standards.iteh.ai/catalog/standards/sist/5edb76c9-5d52-4822-9709-

IEC Just Published 1ad11d0128a/iec-60747-16-2-2001

This summary of recently issued publications (www.iec.ch/JP.htm) is also available by email. Please contact the Customer Service Centre (see below) for further information.

• Customer Service Centre

If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

Email: custserv@iec.ch
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00

INTERNATIONAL STANDARD

IEC 60747-16-2

First edition 2001-03

Semiconductor devices -

Part 16-2: Microwave integrated circuits – Frequency prescalers

iTeh STANDARD PREVIEW

Dispositifs à semiconducteurs +

Partie 16-2: IEC 60747-16-2:2001
https://Circuitslintégrés.hyperfréquences:2-4822-9709Diviseurs préalables de fréquence

© IEC 2001 — Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission 3, rue de Varembé Geneva, Switzerland Telefax: +41 22 919 0300 e-mail: inmail@iec.ch IEC web site http://www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия

PRICE CODE

CONTENTS

FO	REWC	PRD	3		
1	Scop	9	4		
2	Norm	ative references	4		
3	Terms and definitions				
4 Essential ratings and characteristics					
	4.1	General			
	4.2	Application-related description	6		
	4.3	Specification of the function	7		
	4.4	Limiting values (absolute maximum rating system)	9		
	4.5	Operating conditions (within the specified operating temperature range)	10		
	4.6	Electrical characteristics	11		
	4.7	Mechanical and environmental ratings, characteristics and data	12		
	4.8	Additional information	12		
5	Meas	uring methods	13		
	5.1	General	13		
	5.2	Output power (P _o)	13		
	5.3	Output voltage (Va) STANDARD PREVIEW			
	5.4	Minimum operating input power $(P_{i, min})$. Maximum operating input power $(P_{i, max})$.	16		
	5.5	Maximum operating input power $(P_{i, max})$	17		
	5.6	Minimum operating input voltage (V ₁ min)	19		
	5.7	Maximum operating input voltage (V) https://standards.iteh.avcatalog/standardsst/5edb76c9-5d52-4822-9709-	21		
	5.8	Maximum input frequencyd (fightax) wiec-60747-16-2-2001	23		
	5.9	Minimum input frequency (f _{i, min})			
	5.10	High-level modulus control input voltage (V_{CH})			
	5.11	Low-level modulus control input voltage (V _{CL})			
	5.12	High-level modulus control input current (I _{CH})			
	5.13	Low-level modulus control input current (I_{CL})	29		

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SEMICONDUCTOR DEVICES -

Part 16-2: Microwave integrated circuits – Frequency prescalers

FOREWORD

- 1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.
- 3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical specifications, technical reports or guides and they are accepted by the National Committees in that sense.
- 4) In order to promote international unification IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.

 IEC 60747-16-2:2001
- 5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards. 2-2001
- 6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60474-16-2 has been prepared by subcommittee 47E: Discrete semiconductor devices, of IEC technical committee 47: Semiconductor devices.

The text of this standard is based on the following documents:

FDIS	Report on voting
47E/160/FDIS	47E/172/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 3.

The committee has decided that the contents of this publication will remain unchanged until 2006. At this date, the publication will be

- reconfirmed;
- · withdrawn;
- · replaced by a revised edition, or
- amended.

SEMICONDUCTOR DEVICES -

Part 16-2: Microwave integrated circuits – Frequency prescalers

1 Scope

This part of IEC 60747 provides new measuring methods, terminology and letter symbols, as well as essential ratings and characteristics for integrated circuit microwave frequency prescalers.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of IEC 60747. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of IEC 60747 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of IEC and ISO maintain registers of currently valid International Standards.

IEC 60617-12, Graphical symbols for diagrams - Part 12: Binary logic elements

IEC 60617-13, Graphical symbols for diagrams + Part 13: Analogue elements

https://standards.iteh.ai/catalog/standards/sist/5edb76c9-5d52-4822-9709-

IEC 60747-1, Semiconductor devices id Discrete devices - Part 1: General

IEC 60748-2, Semiconductor devices – Integrated circuits – Part 2: Digital integrated circuits

IEC 60748-3, Semiconductor devices. Integrated circuits – Part 3: Analogue integrated circuits

IEC 60748-4, Semiconductor devices – Integrated circuits – Part 4: Interface integrated circuits

3 Terms and definitions

For the purpose of this part of IEC 60747, the following terms and definitions apply:

3.1

power supply voltage V_{xxi} (terminal voltage)

d.c. voltage required to be applied to an 'i'-th terminal noted by 'xx'

3.2

power supply current I_{xxi}

d.c. current flowing through an 'i'-th terminal noted by 'xx'

3.3

output power Po

a.c. power measured at the output terminal

3.4

output voltage V_o

amplitude of voltage swing measured at the output terminal

3.5

input power Pi

a.c. power delivered to the input terminal

3.6

input voltage Vi

amplitude of input voltage swing

high-level modulus control input voltage V_{CH}

control voltage value to transfer the division ratio from low-level modulus to high-level modulus

3.8

low-level modulus control input voltage V_{CL}

control voltage value to transfer the division ratio from high-level modulus to low-level modulus

high-level modulus control input current $I_{\rm CH}$ control current value to transfer the division ratio from low-level modulus to high-level modulus (standards.iteh.ai)

3.10

low-level modulus control input current (247-16-2:2001)

control current value toutransferaithe division statio from high-level modulus to low-level 41ad11d0128a/iec-60747-16-2-2001 modulus

3.11

input frequency f_i

input frequency for which the device functions

division ratio N

ratio of the output frequency and input frequency

3.13

set-up time t_{set}

(under consideration)

4 Essential ratings and characteristics

4.1 General

This clause gives ratings and characteristics required for specifying integrated circuit microwave frequency prescalers used at the microwave or millimetre-wave frequency band.

The integrated circuits contain fixed and two modulus prescalers.

4.1.1 Circuit identification and types

4.1.1.1 Designation and types

Indication of type (device name), category of circuit and technology applied should be given.

Microwave frequency prescalers are divided into two categories:

- type A: fixed modulus type;
- type B: two modulus type.

4.1.1.2 General function description

A general description should be made of the function performed by the integrated circuit microwave frequency prescalers, and the features for the application.

4.1.1.3 Manufacturing technology (standards.iteh.ai)

The manufacturing technology, e.g. <code>IsemiconductorOm</code> onolithic integrated circuit, thin film integrated circuit, <code>micro-assembly,ashould-be-stated/5This-statement/should-include details of the semiconductor technologies4such as MESFET,7-MISFET, MOSFET, Si bipolar transistor, HBT, etc.</code>

4.1.1.4 Package identification

The following should be stated:

- a) chip or packaged form;
- b) IEC and/or national reference number of the outline drawing or of the drawing of a non-standard package including terminal numbering;
- c) principal package material, for example, metal, ceramic, plastic;
- d) for chip form, outlines, dimensions, pad sizes, contact material, and recommended contact technologies.

4.1.1.5 Main application

The main application should be stated if necessary. If the device has restrictive applications, these should be stated here.

4.2 Application-related description

Information on the application of the integrated circuit and its relation to the associated devices should be given.

4.2.1 Conformance to system and/or interface information

It should be stated whether the integrated circuit conforms to an application system and/or an interface standard or recommendation.

Detailed information about application systems, equipment and circuits such as VSAT systems, DBS receivers, and microwave landing systems should also be given.

4.2.2 Overall block diagram

A block diagram of the applied systems should be given if necessary.

4.2.3 Reference data

The most important properties required to permit comparison between derivative types should be given.

4.2.4 Electrical compatibility

It should be stated whether the integrated circuit is electrically compatible with other particular integrated circuits or families of integrated circuits, or whether special interfaces are required.

Details should be given concerning the type of input and output circuits, for example, input/output impedances, d.c. block, open-drain PREVIEW

Interchangeability with other devices, if any, should be given:

4.2.5 Associated devices

IEC 60747-16-2:2001

If applicable, the following should be stated nere:/sist/5edb76c9-5d52-4822-9709-41ad11d0128a/iec-60747-16-2-2001

- devices necessary for correct operation (list with type number, name, and function);
- peripheral devices with direct interfacing (list with type number, name, and function).

4.3 Specification of the function

4.3.1 Detailed block diagram-functional blocks

A detail block diagram or equivalent circuit information concerning the integrated circuit microwave frequency prescalers should be given. The block diagram should be composed of the following:

- a) functional blocks;
- b) mutual interconnections among the functional blocks;
- c) individual functional units within the functional blocks;
- d) mutual interconnections among the individual functional blocks;
- e) function of each external connection;
- f) inter-dependence between the separate functional blocks.

The block diagram should identify the function of each external connection, and where no ambiguity can arise, can also show the terminal symbols and/or numbers. If the encapsulation has metallic parts, any connection to them from external terminals should be indicated. The connections with any associated external electrical elements should be stated, where necessary.

For the purpose of providing additional information, the complete electrical circuit diagram can be reproduced, though this will not necessarily involve giving indications of the function. Rules governing such diagrams may be obtained from IEC 60617-12 or IEC 60617-13.

4.3.2 Identification and function of terminals

All terminals should be identified on the block diagram (supply terminals, input or output terminals, input/output terminals).

The terminal functions 1) to 4) should be indicated in a table as follows:

	Terminal symbol	1) Terminal designation	2) Function	Function of terminal		
Terminal number				3) Input/output identification	4) Type of input/output circuits	

1) Terminal designation

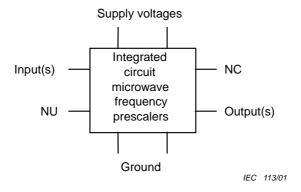
A terminal name indicating the function of the terminal should be given. Supply terminals, ground terminals, blank terminals (with abbreviation NC) and non-usable terminals (with abbreviation NU) should be distinguished.

2) Function iTeh STANDARD PREVIEW

A brief indication of terminal function should be given:

- each function of multi-role terminals, i.e. terminals having multiple functions;
- each function of integrated circuits selected by mutual pin connections or function selection data applied to the function selection pin such as mode selection pin.
- 3) Input/output identification 41ad11d0128a/iec-60747-16-2-2001

Input, output, input/output, and multiple input/output terminals should be distinguished.


4) Type of input/output circuits

The type of input and output circuits, for example, input/output impedances, with or without d.c. block, etc., should be distinguished.

5) Type of ground

If the baseplate of the package is used as ground, this should be stated.

Example:

4.3.3 Functional description

The function performed by the circuit should be specified and include the following information:

- basic function:
- relation to external terminals;
- operation mode (for example, set-up method, preference, etc.);
- interrupt handling.

4.3.4 Family-related characteristics

In this part, all family specific functional descriptions shall be provided (with reference to IEC 60748-2, IEC 60748-3 and IEC 60748-4).

If ratings and characteristics and function characteristics exist for the family, the relevant part of IEC 60748 should be used (for example, for microprocessors, see IEC 60748-2, Chapter III, section 3).

NOTE For each new device family, specific items shall be added to the relevant part of IEC 60748.

4.4 Limiting values (absolute maximum rating system)

The table of these values should contain the following PREVIEW

- Any interdependence of limiting conditions shall be specified.
- If externally connected and/or attached elements, for example heatsinks, have an influence on the values of the ratings othe ratings shall be prescribed for the integrated circuit with the elements connected and/or attached 1576c9-5d52-4822-9709-
- If limiting values are exceeded for transient overload, the permissible excess and their durations shall be specified.
- Where minimum and maximum values differ during programming of the device, this should be stated.
- All voltages are referenced to a specified reference terminal (V_{ss}, GND, etc.).
- In satisfying the following clauses, if maximum and/or minimum values are quoted, the manufacturer must indicate whether he refers to the absolute magnitude or to the algebraic value of the quantity.
- The ratings given must cover the operation of the multi-function integrated circuit over the specified range of operating temperatures. Where such ratings are temperaturedependent, such dependence should be indicated.

4.4.1 Electrical limiting values

Limiting values should be specified as follows:

Subclause	Parameters	Min.	Max.
4.4.1.1	Power supply voltage(s)	+	+
4.4.1.2	Power supply current(s) (where appropriate)		+
4.4.1.3	Terminal voltage(s) (where appropriate)	+	+
4.4.1.4	Terminal current(s) (where appropriate)		+
4.4.1.5	Input power		+
4.4.1.6	Power dissipation (where appropriate)		+

The detail specification may indicate those values within the table including notes 1 and 2.

ameters 1, Note 2)	Symbols	Min.	Max.	Unit

NOTE 1 Where appropriate, in accordance with the type of circuit considered.

NOTE 2 For power supply voltage range:

- limiting value(s) of the continuous voltage(s) at the supply terminal(s) with respect to a special electrical reference point;
- where appropriate, limiting value between specified supply terminals;
- when more than one voltage supply is required, a statement should be made as to whether the sequence in which these supplies are applied is significant; if so, the sequence should be stated;
- when more than one supply is needed, it may be necessary to state the combinations of ratings for these supply voltages and currents.

4.4.2 Temperatures

- a) Operating temperature
- b) Storage temperature
- c) Channel temperature

d) Lead temperature (for soldering)

iTeh STANDARD PREVIEW The detail specification may indicate those values within the table including the note. (standards itch ai

Parameters (Note)	Symbols 60747-16-2:2001	Min.	Max.	Unit	
https://standards.iteh.ai/catalog/standards/sist/5edb76c9-5d52-4822-9709-					
NOTE Where appropriate, in accordance	8 with the 4ype of c	areuit consid	dered.		

4.5 Operating conditions (within the specified operating temperature range)

They are not to be inspected but may be used for quality assessment purposes.

4.5.1 Power supplies - positive and/or negative values

4.5.2 Initialization sequences (where appropriate)

If special initialization sequences are necessary, the power supply sequencing and initialization procedure should be specified.

4.5.3 Input voltage(s) or input signal (where appropriate)

For RF input signal, waveform and characteristic impedance should be specified.

4.5.4 Output current(s) (where appropriate)

RF or d.c. current with relevant impedance should be specified.