International Standard

925

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION®MEЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ®ORGANISATION INTERNATIONALE DE NORMALISATION

Solid mineral fuels — Determination of carbon dioxide content — Gravimetric method

Combustibles minéraux solides - Dosage du dioxyde de carbone - Méthode gravimétrique

Second edition - 1980-08-01

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 925:1980 https://standards.iteh.ai/catalog/standards/sist/3608587e-1bfc-47e7-b4d7-482197999656/iso-925-1980

UDC 662.66:546.234-31:543.21

Ref. No. ISO 925-1980 (E)

Descriptors: Coal, chemical analysis, carbon dioxide, determination of content, gravimetric analysis.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 925 was developed by Technical Committee ISO/TC 27.

Solid mineral fuels.

This second edition was submitted directly to the ISO Council, in accordance with clause 5.10.1 of part 1 of the Directives for the technical work of ISO. It cancels and replaces the first edition (i.e. ISO 925-1975), which had been approved by the member bodies of the following countries:

bodies of the following countries https://standards.iteh.ai/catalog/standards/sist/3608587e-1bfc-47e7-b4d7-

482197999656/iso-925-1980

United Kingdom

Australia Germany, F. R. Romania
Austria India Spain

Belgium Ireland South Africa, Rep. of

BulgariaItalySwedenCanadaJapanSwitzerlandChileKorea, Rep. ofTurkey

Netherlands

Denmark New Zealand USA
Egypt, Arab Rep. of Poland USSR
France Portugal Yugoslavia

No member body had expressed disapproval of the document.

Czechoslovakia

Solid mineral fuels — Determination of carbon dioxide content — Gravimetric method

1 Scope and field of application

This International Standard specifies a gravimetric method for the determination of carbon dioxide in the mineral carbonates associated with solid mineral fuels.

 $\ensuremath{\mathsf{NOTE}}$ — The result obtained will include any carbon dioxide absorbed by the fuel.

iTeh STANDAR

2 Principle

The sample is treated with hydrochloric acid, which reacts with the carbonates present to liberate carbon dioxide. The carbonate is not dioxide resulting from the decomposition of the carbonate is not absorbed and weighed.

482197999656/isoft

3 Reagents

All reagents, unless otherwise specified, shall be of analytical reagent quality, and water free from carbon dioxide shall be used throughout.

NOTE — Distilled water may be freed from carbon dioxide by boiling gently for 15 min.

- 3.1 Hydrochloric acid, approximately 3 mol/l.
- **3.2** Copper phosphate, granular, particle size 0,7 to 1,2 mm.
- **3.3 Magnesium perchlorate**, dried, particle size 0,7 to 1,2 mm.

NOTE — Regeneration of magnesium perchlorate should not be attempted, owing to the risk of explosion. When exhausted, the magnesium perchlorate should be washed down the sink with a stream of water.

- **3.4** Soda-asbestos, particle size 1,2 to 1,7 mm, preferably self-indicating.
- **3.5** Wetting agent, e.g. ethanol 95 % (V/V).

4 Apparatus

All graduated apparatus shall be of the best analytical quality available.

The system comprises a purification train, a reaction flask assembly and an absorption train. A suitable apparatus is shown in the figure, and consists of :

- 4.1 Purification train. A bubbler containing sulphuric acid (standard (el 1,84 g/ml) and an absorption tube containing soda-asbestos.
 - **4.2** Reaction flask assembly. A 300 ml flat-bottomed flask fitted with a tap funnel, a double-surface condenser and a bulbed tube.
 - **4.3** Absorption train. Three absorption tubes packed respectively as follows:
 - a) magnesium perchlorate to dry the gas;
 - b) granular copper phosphate to absorb hydrogen sulphide, followed by a protective layer of magnesium perchlorate;
 - soda-asbestos to absorb carbon dioxide, followed by a protective layer of magnesium perchlorate to absorb water produced in the reaction between carbon dioxide and sodaasbestos.
 - 4.4 Balance, accurate to 0,1 mg.

5 Preparation of sample

The sample used for the determination is the analysis sample, ground to pass a sieve of 200 μ m aperture. Before commencing the determination, mix the sample thoroughly for at least 1 min, preferably by mechanical means.

If necessary, expose the sample in a thin layer for the minimum time required to reach approximate equilibrium with the laboratory atmosphere.

Procedure

Weigh accurately, to the nearest 0,01 g, about 5 g of the sample (see note) into the reaction flask and add 5 drops of the wetting agent (3.5) and 100 ml of water. Close the flask by means of a rubber stopper and shake vigorously to wet the sample. Remove the stopper and wash any sample adhering to it back into the flask. Assemble the apparatus as shown in the figure, and draw air through it at a rate of about 50 ml/min for about 10 min. Stop the circulation of air, remove the absorption tube and close the open end of the tube connected to it. Wipe the absorption tube with a clean dry cloth free from loose fibres, allow it to cool to the balance room temperature and weigh it after 15 min. Reconnect the absorption tube to the apparatus and recirculate air as before. Place 25 ml of the hydrochloric acid (3.1) in the tap funnel. Vent the system to air and admit the acid to the reaction flask. Raise the temperature of the liquid in the reaction flask slowly so that it boils after about 15 min. Continue boiling for a further 30 min, the rate of boiling being adjusted so that the condenser is not overloaded. Stop the circulation of air, remove the absorption tube, condition and weigh it as before.

NOTE - For fuels containing more than 2 % of carbon dioxide, the sample mass may be reduced.

7 Expression of results

iTeh STANDA

The carbon dioxide (CO₂) content in the sample as analysed, expressed as a percentage by mass, is given by the formula dards.iteh.ai)

 $100 m_2$

 m_1

where

 m_1 is the mass, in grams, of sample taken;

 m_2 is the increase in mass, in grams, of the absorption tube.

The result (preferably the mean of duplicate determinations; see clause 8) shall be reported to the nearest 0,01 %.

Precision of the method

Carbon dioxide	Maximum acceptable differences between results	
	Repeatability	Reproducibility
Up to 1 %	0,05 % absolute	0,10 % absolute
1 % and over	5 % of the mean result	10 % of the mean result

8.1 Repeatability

The results of duplicate determinations, carried out at different times in the same laboratory by the same operator with the same apparatus on two representative portions taken from the same analysis sample (see note below), shall not differ by more than the above value.

8.2 Reproducibility

The means of the results of duplicate determinations, carried out in two different laboratories on representative portions taken from the same analysis sample at the last stage of sample preparation (see note below), shall not differ by more than the above value.

9 Test report

ISO 925:1980

https://standards.iteh.ai/catalog/standarThe_test/report/shall/include the_following particulars:

482197999656/iso-925-1980

- a) the reference of the method used;
- the results and the method of expression used;
- any unusual features noted during the determination;
- d) any operation not included in this International Standard, or regarded as optional.

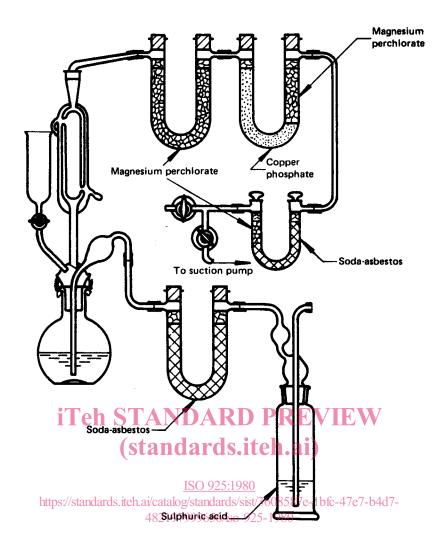


Figure - Apparatus assembly

3

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 925:1980

https://standards.iteh.ai/catalog/standards/sist/3608587e-1bfc-47e7-b4d7-482197999656/iso-925-1980

iTeh STANDARD PREVIEW (standards.iteh.ai)

482197999656/iso-925-1980

 $\underline{ISO~925:1980}\\ https://standards.iteh.ai/catalog/standards/sist/3608587e-1bfc-47e7-b4d7-$

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 925:1980 https://standards.iteh.ai/catalog/standards/sist/3608587e-1bfc-47e7-b4d7-482197999656/iso-925-1980