

Designation: A 697 - 98

Standard Test Method for Alternating Current Magnetic Properties of Laminated Core Specimen Using Voltmeter-Ammeter-Wattmeter Methods¹

This standard is issued under the fixed designation A 697; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This test method covers the determination of several ac magnetic properties of laminated cores made from flat-rolled magnetic materials.
- 1.2 This test method covers test equipment and procedures for the determination of impedance permeability and exciting power from voltage and current measurements, and core loss from wattmeter measurements. These tests are made under conditions of sinusoidal flux.
- 1.3 This test method covers tests for two general categories (1 and 2) of cores based on size and application.
- 1.4 Tests are provided for power and control size cores (Category 1) operating at inductions of 10 to 15 kG [1.0 to 1.5 T] and at frequencies of 50, 60, and 400 Hz.
- 1.5 Procedures and tests are provided for coupling and matching type transformer cores (Category 2) over the range of inductions from 100 G [0.01 T] or lower to 10 kG [1.0 T] and above at 50 to 60 Hz or above when covered by suitable procurement specifications.
- 1.6 This test method also covers tests for core loss and ac impedance permeability under incremental test conditions (ac magnetization superimposed on dc magnetization) for the above core types and at inductions up to those that cause the ac exciting current to become excessively distorted or reach values that exceed the limits of the individual test equipment components.
- 1.7 This test method shall be used in conjunction with Practice A 34/A 34M and Terminology A 340. It depends upon these designated documents and a related reference test manual for detailed information which will not be repeated in this test method.
- 1.8 The preferred units in this standard are cgs-emu and inch-pound units. Values in SI units are indicated in brackets or conversion factors are provided. Derivations of separate equations for SI units are provided as necessary.

¹ This test method is under the jurisdiction of Committee A-6 on Magnetic Properties and is the direct responsibility of Subcommittee A06.01 on Test Methods. Current edition approved Oct. 10, 1998. Published February 1999. Originally published as A 697 – 74. Last previous edition A 697 – 91 (1996) ^{ε1}.

1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

A 34/A 34M Practice for Sampling and Procurement Testing of Magnetic Materials ²

A 340 Terminology of Symbols and Definitions Relating to Magnetic Testing ²

3. Terminology

3.1 The terms and symbols listed below apply only to this test method. The official list of symbols and definitions may be found in Terminology A 340.

3.2 Symbols: Symbols:

 $A_s = E$ lamination surface area, one side only,

 $A_{ss} = EI$ lamination surface area, one side only,

h = lamination stack height,

 A_{dc} = dc ammeter, I_{dc} = dc current.

 N_1 = primary turns,

 N_2 = secondary turns,

 N_3 = tertiary turns,

 R_1 = ammeter shunt resistance,

 V_f = flux voltmeter,

w = lamination center leg width,

W = wattmeter, and

Z = choke coil impedance.

4. Summary of Test Method

- 4.1 For Category 1 cores, the recommended tests are made at a frequency of 60 Hz and at a test induction within the range from 10 through 15 kG [1.0 to 1.5 T].
- 4.2 For Category 2 cores, the recommended tests are made at a frequency of 50 or 60 Hz and at inductions of 40, 100 or 200, 2000, 5000, 6000, 7000, and 10 000 G [0.004, 0.01 or 0.02, 0.2, 0.5, 0.6, 0.7, and 1.0 T]. Any or all may be required depending on the type of core material.

² Annual Book of ASTM Standards, Vol 03.04.

5. Significance and Use

- 5.1 This test method was developed for evaluating the ac magnetic properties of laminated cores made from flat-rolled magnetic materials.
- 5.2 The reproducibility and repeatability of this test method are such that this test method is suitable for design, specification acceptance, service evaluation, and research and development.

6. Apparatus

- 6.1 The apparatus for testing under this test method shall consist of as many of the following components, described in 6.2 through 6.12, as required to perform the desired test measurements.
- 6.2 Test Coils—In general, test coils are designed to surround a square center leg stack (lamination stack height equal to center leg width). They consist of two or more windings with the secondary wound on the coil form first. Three groups of standard test coils are described in 6.2.1 through 6.2.3. Each of these has been designed to provide specific features during test. Because of turns, coil resistance, and magnitude of induced voltage, each has a particular field of application.
- 6.2.1 The coils listed in Table 1, for testing Category 1 cores, have been designed to have equal primary and secondary turns and provide an induced voltage of 115 V when operating at a peak flux density of 15 kG [1.5 T] at 60 Hz.
- 6.2.2 The coils listed in Table 2, for testing Category 2 cores, have been designed to have characteristics that provide a direct readout capability for incremental permeability. The test coil is designed so that the primary winding $-->N_1=100\sqrt{2} \pi l_1$, the secondary winding $N_2=20 l_1$, and

- the tertiary winding N_3 is designed so that the $N_3 = 5\sqrt{2} \pi l_1$ (and $N_1/N_3 = 20$).
- 6.2.3 The coils listed in Table 3 have been designed for testing Category 1 cores at a frequency of 400 Hz.
- 6.3 Flux Voltmeter—The flux voltmeter shall be a true average responsive voltmeter calibrated to read $\sqrt{2}$ $\pi/4$ times the full wave rectified average voltage so that its indications will be identical to those of a true rms voltmeter on a pure sinusoidal voltage. To produce the estimated precision of tests under this test method, the full-scale errors shall not exceed 0.5 % (0.25 % or better preferred). Either digital or analog flux voltmeters are permitted. The normally high impedance of digital flux voltmeters is desirable to minimize loading effects. The internal resistance of an analog flux voltmeter shall not be less than 1000 Ω/V of full-scale indication.
- 6.4 A variable voltage divider on the input of the flux voltmeter may be used to scale the voltmeter reading. The voltage divider should provide for ratio adjustments to four significant figures to establish the desired fraction of the secondary voltage that is to be impressed on the flux voltmeter. Care must be taken to assure that the voltage rating of a ratio transformer is adequate for use at the test frequency and voltage. A resistive voltage divider may be used with high impedance electronic voltmeters. Dividers having a total resistance of at least 10 K Ω for low-voltage tests and 100 K Ω or more for other tests are preferred. When a resistive voltage divider is used, additional correction for instrument burden may be required to eliminate the effect of the resistive losses in the voltage divider upon measurements.
- 6.5 RMS Voltmeter, V—A true rms responsive voltmeter shall be used to indicate the rms voltage for exciting power

TABLE 1 Test Coils for El Laminations Used at 60 Hz in Power Applications, Category 1

Note 1—Winding forms should allow for at least 0.030-in. [0.076-cm] clearance between lamination stack and coil form, and its walls should not be thicker than necessary to provide adequate insulation and strength for coil support.

Note 2—These coils are also suitable for use at 50 Hz and other frequencies.

Note 3— N_3 winding is required for setting induction when incremental properties are to be measured or where other instruments interfere with induction measurements. It is composed of one layer of No. 34 wire so that $N_3 = 5\sqrt{2\pi} l_1$ (where l_1 is the magnetic path length).

		Lamination			Test Winding (see 6.2.1)								
		Center Leg				N ₁			N ₂			N ₃	
W	idth (w)	Length Relative	Stack F	leight (<i>h</i>)	- Lurne	Wire	Resist- ance,Ω	Turns	Wire Size	Resist- ance, Ω	Turns	Wire Size	Resist-
in.	cm	to w	in.	cm		Size							ance, Ω
3/8	0.9525	1.5 <i>w</i>	3/4	1.905	1000	35	84.3	1000	35	103.8	64	34	2.84
1/2	1.270	1.5 <i>w</i>	1	2.540	800	34	68.3	800	34	80.7	72	34	4.00
5/8	1.588	1.5 <i>w</i>	7/8	2.222	800	33	56.6	800	33	67.8	83	34	5.54
3/4	1.905	1.5 <i>w</i>	3/4	1.905	800	31	36.6	800	31	43.5	100	34	7.77
7/8	2.222	1.5 <i>w</i>	7/8	2.222	588	28	15.4	588	28	18.1	116	34	9.86
15/16	2.381	1.5 <i>w</i>	15/16	2.381	513	26	8.75	513	26	10.6	136	34	12.8
1	2.540	1.5 <i>w</i>	1	2.540	450	25	6.02	450	25	7.44	133	34	13.3
11/8	2.857	1.5 <i>w</i>	11/8	2.857	356	24	4.45	356	24	5.37	150	34	16.7
11/4	3.175	1.5 <i>w</i>	11/4	3.175	288	22	2.43	288	22	2.92	167	34	20.4
13/8	3.493	1.5 <i>w</i>	13/8	3.493	238	20	1.43	238	20	1.75	183	34	24.3
11/2	3.810	1.5 <i>w</i>	11/2	3.810	200	18	0.82	200	18	0.98	200	34	28.8
15/8	4.127	1.5 <i>w</i>	15/8	4.127	170	14	0.35	170	14	0.46	245	34	38.0
13/4	4.445	1.5 <i>w</i>	13/4	4.445	147	16	0.45	147	16	0.52	233	34	38.7
21/8	5.397	1.5 <i>w</i>	21/8	5.397	100	12	0.16	100	12	0.20	283	34	56.6
21/4	5.715	1.5 <i>w</i>	21/4	5.715	89	10	0.11	89	10	0.13	320	34	67.5
21/2	6.350	1.5 <i>w</i>	21/2	6.350	72	10	0.10	72	10	0.11	333	34	73.9
3	7.62	1.5 <i>w</i>	11/2	3.810	76	10	0.11	76	10	0.11	400	34	111.0
4	10.16	1.5 <i>w</i>	2	5.080	57	10	0.09	57	10	0.10	534	34	148.0

TABLE 2 Test Coils for El Laminations Used in General Magnetic Applications, Category 2

Note 1—Winding forms should allow for at least 0.030-in. [0.076-cm] clearance between lamination stock and coil form, and its walls should be not thicker than necessary to provide adequate insulation and strength for coil support.

Note 2—These coils may be used at any frequency where voltage does not become excessively large.

Note 3— N_3 winding is required for setting production when incremental properties are to be measured or other instruments interfere with induction measurements. It is composed of one layer of No. 34 wire so that $N_3 = 5\sqrt{2\pi} l_1$ (where l_1 is the magnetic path length).

		Lamination				Test Windings (see 6.2.2)									
		Center Leg			N ₁				N ₂		N ₃				
Wi	idth (w)	Length	Stack F	Stack Height (h)		Wire	Resist-	Turns	Wire	Resist-	Turno	Wire	Resist-		
in.	cm	Relative to w	in.	cm	Turns	Size	ance, Ω	Turris	Size	ance, Ω	Turns	Size	ance, Ω		
3/16	0.4763	1.5 <i>w</i>	3/16	0.4763	722	36	24.2	32	30	0.37	36	34	0.997		
1/4	0.635	1.5 <i>w</i>	1/4	0.635	888	36	26.3	36	40	0.82	44	34	1.47		
3/8	0.9525	1.5 <i>w</i>	3/8	0.9525	1278	36	127.8	40	24	0.30	64	34	2.84		
1/2	1.270	1.5 <i>w</i>	1/2	1.270	1444	36	180.4	60	24	0.42	72	34	4.00		
5/8	1.588	1.5 <i>w</i>	5/8	1.588	1666	36	263.2	75	24	0.58	83	34	5.53		
11/16	1.746	1.5 <i>w</i>	11/16	1.746	1822	36	294.4	82	23	0.55	92	34	6.64		
3/4	1.905	1.5 <i>w</i>	3/4	1.905	2000	35	278.0	90	21	0.42	100	34	7.77		
7/8	2.222	1.5 <i>w</i>	7/8	2.222	2333	34	295.7	105	21	0.45	116	34	10.3		
15/16	2.381	1.5 <i>w</i>	15/16	2.381	2711	34	374.6	122	20	0.55	136	34	12.8		
1	2.540	1.5 <i>w</i>	1	2.540	2666	34	373.9	120	20	0.55	133	34	13.3		

TABLE 3 Test Coils for El Laminations Used at 400 Hz in Power and Other Applications, Category 1

Note 1—Winding forms should allow for at least 0.030-in. [0.076-cm] clearance between lamination stack and coil form, and its walls should be not thicker than necessary to provide adequate insulation and strength for coil support.

Note 2— These coils are also suitable for use at other frequencies.

Note 3—This winding is required for setting induction when incremental properties are to be measured or where other instruments interfere with induction measurements. It is composed of one layer of No. 34 wire so that $N_3 = 5\sqrt{2\pi} l_1$ (where l_1 is the magnetic path length).

		Lamination	on			Test Windings (see 6.2.3)									
Center Leg					ttns N ₁ standar N ₂ itch ai							N ₃	Ratio		
Width (w)		Length Relative	Stack Height (h)		Turns	Wire	Resist-	Turns	Wire	Resist-	t- Turns	Wire	Resist-	$G = A_{ss}/A_{s}$	
in.	cm	to w	in.	cm	Tuitis	Size	ance, Ω	Tuilis	Size	ance, Ω	rums	Size	ance, Ω	$G = A_{SS}A_{S}$	
3/8	0.9525	5 1.5 <i>w</i>	3/8	0.9525	458	33	19.06	458	33	24.2	64	34	2.84	1.308	
1/2	1.270	1.5 <i>w</i>	1/2	1.270	262	30	6.46	262	30	7.68	72	34	4.00	1.327	
5/8	1.588	1.5 <i>w</i>	5/8	1.588	162	27	2.37	A 162	98 27	2.74	83	34	5.52	1.329	
3/4	1.905	1.5 <i>w</i>	3/4	1.905	134	24	1.16	134	24	1.38	100	7 34 1 5	7.77	2.519	
7/8	2.222	1.5w	7/8	2.222	82	20	0.34	82	20	0.40	116	34	10.3	3.407	
1	2.540	1.5 <i>w</i>	1	2.540	62	20	0.29	62	20	0.32	133	34	13.3	4.425	

measurements. It may also be used for evaluating the form factor of the voltage induced in the secondary of the test fixture and for evaluating instrument losses. The accuracy of the rms voltmeter shall be the same as that specified for the flux voltmeter. Either digital or analog voltmeters are permitted. The normally high-input resistance of the digital rms voltmeters is desirable to minimize loading effects. The input resistance of an analog rms voltmeter shall not be less than 1000 Ω /V of full-scale indication.

Note 1—Many electronic voltmeters are either peak responsive or average responsive in their indications. Although these meters may have scales that are marked *RMS Volts*, they should not be used for rms current or rms voltage measurements when distorted waves are present. They may indicate the rms values of voltages with little distortion but should not be relied upon for rms voltage measurements in magnetic test circuits. When flux is held closely sinusoidal, these probable errors can sometimes be ignored for rms voltage measurements at the lower inductions. However, the current waveform under these conditions always has too much distortion for proper use of one of these instruments as an rms ammeter.

6.6 RMS Ammeter—A true rms responsive meter shall be used to measure the rms exciting current for calculating

exciting power or magnetizing force, H_z , for impedance permeability. This meter may be either an electronic or analog type. An analog instrument may be a moving iron-vane, thermal, or electrodynamometer type. Sufficient current ranges should be provided to cover the desired range of exciting currents. This meter shall have an accuracy of 1 % of full-scale indication or better. Its internal impedance should be less than 0.1 Ω for testing Category 1 cores. For Category 2 cores in which the test coil resistance is already high, the ammeter's input resistance may be higher (Note 2). A true rms responsive voltmeter (Note 1) of suitable accuracy connected across an ammeter shunt resistor provides an rms ammeter having an adequate range and ability of adjustment.

Note 2—At any test induction the voltage drop across the rms ammeter (or shunt resistor) should be less than 1 % of the voltage across the test coil primary windings.

6.7 Ammeter Shunt Resistor, R_1 —This is a high quality resistor that is placed in series with the primary test winding and shall carry the full primary exciting current. A voltmeter across its terminal completes an ammeter.

- 6.7.1 This resistor should have an accuracy of at least 0.1 % and should have a very low-temperature coefficient so that its errors do not appreciably increase the overall ammeter errors.
- 6.7.2 When testing larger Category 1 (power size) cores at high inductions this resistor may carry several amperes and the power dissipation capabilities should be such that the maximum primary current will not result in destructive heating or loss of specified accuracy as a result of self heating.
- 6.7.3 For smaller cores tested at low or moderate inductions, the power dissipation capabilities may be as low as 5 W without causing errors as a result of self heating.
- 6.8 Tapped Transformer—This transformer shall be capable of supplying sufficient current and voltage for the excitation of all common Category 1 (power size) laminations. Its core should consist of high-quality silicon iron laminations and be designed to operate at inductions of 12 kG or below and should be able to handle 750 to 1000 VA when operating at a primary voltage of 115 V and $60\ H_z$. For convenience, it should have taps at 50, 75, 100, and 125 V. Lower voltage taps may also be useful.
- 6.9 Variable Transformer or Autotransformer—For tests of larger Category 1 cores, the variable transformer or autotransformer should have a rating of 1 or 1.5 kVA. For Category 2 or smaller Category 1 cores it is often desirable to use a smaller variable transformer because it may provide smaller steps of voltage adjustment.
- 6.10 Choke Coil—This is a high-inductance choke coil having an air gap to prevent magnetic saturation. It shall have a wire size sufficiently large to handle the dc incremental currents and a core size and number of turns that provide sufficient inductance to meet the requirements of 9.5.7.
- 6.11 Power Source—To provide satisfactory voltage stability it is recommended that a 1-kVA constant voltage transformer of good quality be used. It shall have voltage regulation of at least 1 % and harmonic correction or filtering to provide a voltage waveform which has 3 % or less harmonic distortion. For more precise testing, both voltage regulation and harmonic distortion should be no larger than 0.1 %.
- Note 3—Test power may alternatively be supplied by an electronic source of sinusoidal test power that is characterized by low internal impedance and excellent voltage and frequency stability. Voltage stability within 0.1 % and frequency accuracy within 0.1 % should be maintained. The tapped transformer and variable transformer may not be needed when such test power sources are used. Electronic power sources using negative feedback from the secondary winding of the test fixture to reduce flux waveform distortion may be used.
- 6.12 Wattmeter—An electronic wattmeter with appropriate voltage, current, and frequency ratings is the preferred instrument. The voltage circuit shall be capable of accepting the maximum peak voltage that is induced in the secondary winding during testing. The current input circuitry shall be capable of handling the maximum rms current and the maximum peak current drawn by the primary winding of the test fixture when core loss tests are being performed. The wattmeter shall be capable of accurate measurements at all frequencies of interest and at low-power factors.

Alternatively, a direct reading low-power factor electrodynamometer wattmeter of high sensitivity may be used. For general testing the resistance of the potential circuit of this instrument should not be less than 100 Ω /V of full-scale potential-circuit voltage rating. The inductance of the potential-circuit coil should be such that the inductive reactance at the test frequency will not exceed 1 Ω per 1000 Ω of resistance of this circuit unless the potential circuit is compensated for its reactance.

7. Test Specimen

- 7.1 The test specimen may consist of any size lamination described in Table 4. It shall be composed of sufficient laminations to provide a lamination stack having a square cross section in the leg which is to be surrounded by the test winding (lamination stack height equal to center leg width).
- 7.2 If the test specimen consists of *EI*, *UI*, *EE*, or other two-piece laminations, there shall be equal numbers of both types in the test specimen. If it consists of an *F* type or other one-piece lamination, there shall be an even number of laminations in the test specimen.

8. Test Specimen Preparation

- 8.1 Check the specimen before test to see that it contains no dented or bent pieces and that the laminations are reasonably flat, without noticeable curvature.
- 8.2 Weigh the part of the test specimen upon which calculations are based with a balance of sufficient sensitivity and accuracy to determine the specimen mass to an accuracy of 0.1 %. This eliminates the mass as a source of testing error and assures that any rounding of test specimen mass will be in the correct direction.
- 8.3 When correlations are to be obtained between the properties of the lamination stack and the properties of the magnetic material of which it is composed, the laminations shall have a proper stress-relieving anneal after punching and before test.
- 8.4 The laminations shall be assembled into the test coils by alternatively interleaving the joints (Note 4) *one by one* unless otherwise agreed upon between the producer and the user. Take care to have all burrs the same direction, for example, burrs *up* on both *Es* and *Is* (or other shapes). One method of stacking is to set equal height piles of *Es* and *Is* on either side of the coil with its cover plate inverted. (The test fixture is described in Appendix X2.) Beginning with the left hand pick up an *E*, insert it, repeat with right hand. Simultaneously use other hand to place an *I*. Keep *Es* and *Is* from butting as the whole stack can be butted closely afterwards. Continue stacking *Es* and *Is* until desired stack height is reached. Insert final missing *I* at bottom. Butt pile, invert, and place into stand.

Note 4—Care should be exercised in stacking the core to avoid bending any of the laminations beyond their elastic limit or otherwise damaging them unduly.

- 8.5 The winding forms for the test coils shall provide a clearance of $\frac{1}{32}$ in. [0.8 mm] over the lamination stack width to prevent binding and permit ease of stacking the laminations during assembly. This also provides freedom of lamination movement to facilitate good joint alignment after the coils are energized before and during test.
- 8.6 When making measurements the test specimen and coil assembly shall be held loosely in a test fixture similar to that of

TABLE 4 Dimensional Characteristics of El Lamination Stacks

Lamination					E Laminatio	n Only			El Com			
				Center Le	eg .	_ One Side	Surface Area	One Sid	le Surface Area	Magnetic Path Length (I ₁)		
Size	Special Features	Computer Code	Wid	Width (w)			(A_s)		(A_{ss})		Magnetic Patri Length (1 ₁)	
			in.	cm	Relative to Width	in. ²	cm ²	in. ²	cm ²	in.	cm	A_{ss}/A_{s}
EI-18	SHT		3/16	0.4761		0.1985	1.281	0.2680	1.729			1.350
EI-18	Н		3/16	0.4761		0.2336	1.507	0.3031	1.956			1.298
El-18	NO	0018	3/16	0.4761	1.5 <i>w</i>	0.2344	1.512	0.2947	1.901	1.625	4.127	1.300
EI-25		0025	1/4	0.6350	1.5 <i>w</i>	0.3733	2.409	0.4965	3.203	2.000	5.080	1.330
El-	•••		1/4	0.6350	4.5	0.3750	2.420	0.5000	3.226		7.400	1.333
EI-31 EI-37		0031	⁵ /16	0.7938	1.5w	0.6962	4.492	0.9042	5.834	2.937	7.460	1.299
EI-37 EI-50		0037 0050	3/8 1/2	0.9525 1.270	1.5 <i>w</i> 1.5 <i>w</i>	0.8134 1.206	5.248 7.781	1.064 1.600	6.865 10.32	2.875 3.250	7.302 8.255	1.308 1.327
EI-62		0062	5/8	1.588	1.5w	1.746	11.27	2.319	14.96	3.750	9.525	1.327
EI-62	 LH	0063	5/8	1.588								
EI-68		0068	11/16	1.746	1.5 <i>w</i>	2.115	13.65	2.811	18.14	4.125	10.48	1.329
EI-75	VOP	0074	3/4	1.905								
EI-75	Std.	0075	3/4	1.905	1.5 <i>w</i>	2.519	16.25	3.350	21.61	4.500	11.43	1.330
EI-75	S	0076	3/4	1.905		2.473	15.96	3.260	21.03			1.318
EI-75	H2L	0077	3/4	1.905								
EI-75	H2L	0078	3/4	1.905								
EI-75	H4	0079	3/4	1.905								
EI-87	Н	0087	7/8	2.222	1.5 <i>w</i>	3.407	21.98	4.517	29.14	5.250	13.34	1.326
EI-87	HS	8800	7/8	2.222		3.355	21.65	4.416	28.49			1.317
EI-87	RH	0089	7/8	2.222		3.407	21.98	4.517	29.14			1.326
EI-93		0092	¹⁵ / ₁₆	2.381								
EI-93	Н	0093	15/16	2.381	1.5 <i>w</i>	4.261	27.49	5.502	35.50	6.125	15.56	1.312
EI-93	HS	0094	¹⁵ / ₁₆	2.381		4.204	27.12	5.479	35.35			1.303
EI-93	H6	0095	¹⁵ / ₁₆	2.381	4 5						 15.04	
EI-100 EI-100	H RH	0100 0102	1 1	2.540 2.540	1.5 <i>w</i>	4.425 4.425	28.55 28.55	5.850 5.850	37.74 37.74	6.000	15.24	1.322 1.322
EI-100	HS	0102	1	2.540	Tob	4.425	28.17	5.735	37.74			1.322
EI-100	RHS	0101	1	2.540	16 . n	4.366	28.17	5.735	37.00			1.313
El-112	Н	0112	11/8	2.857	1.5w	5.620	36.25	7.443	48.02	6.750	17.15	1.324
El-112	RH	0114	11/8	2.857		5.620	36.26	7.443	48.02			1.324
El-112	HS	0113	11/8	2.857	•// <u>D</u> te	5.555	35.84	7.315	47.20			1.317
El-112	RHS	0115	11/8	2.857		5.555	35.84	7.315	47.20			1.317
EI-125	Н	0125	11/4	3.175	1.5w	6.956	44.88	9.225	7 59.52	7.500	19.05	1.326
EI-125	RH	0127	11/4	3.175	CULL	6.956	44.88	9.225	59.52			1.326
EI-125	HS	0126	11/4	3.175		6.891	44.46	9.096	58.69			1.320
EI-125	RHS	0128	11/4	3.175		6.891	44.46	9.096	58.69			1.320
EI-125	H6	0129	11/4	3.175	🔥	TNI AG	07 0 0					
El-137	Н	0136	13/8	3.493	🕰	8.433	54.41	11.19	72.20			1.327
El-137	s://sHSnda	0137	13/8	3.493	1.5w	8.343	3-(53.83 -4a	511.02 23	f-b7151067	8.250	astm ^{20.06} 7-98	1.320
EI-137	RH	0138	13/8	3.493		8.433	54.41	11.19	72.20			1.327
EI-137 EI-140	RHS RH	0139 0140	1% 1%	3.493 3.493	1	8.343 9.206	53.83 59.40	11.02 12.22	71.10 78.84		22.86	1.320 1.328
EI-140	RH6	0140	1%	3.493	1.5 <i>w</i> 1.5 <i>w</i>	8.395	54.16	11.12	71.75	9.000 9.000	22.86	1.324
El-150	Н	0150	11/2	3.810	1.5w	10.05	64.84	13.35	86.13	9.000	22.86	1.324
EI-150	HS	0151	11/2	3.810		9.952	64.21	13.16	84.91			1.322
El-150	RH	0152	11/2	3.810		10.05	64.84	13.35	86.13			1.328
EI-150	RHS	0153	11/2	3.810		9.952	64.21	13.16	84.91			1.322
EI-150	LH	0154	11/2	3.810		17.92	115.6	22.35	144.2			1.247
EI-162	Н	0162	15/8	4.127	1.5 <i>w</i>	13.13	84.71	17.72	114.3	11.00	27.94	1.350
EI-162	HS	0163	15/8	4.127		12.99	83.81	17.45	112.6			1.343
EI-175	Н	0175	13/4	4.445	1.5 <i>w</i>	13.66	88.13	18.13	117.0	10.50	26.67	1.327
EI-175	HS	0176	13/4	4.445		13.62	87.88	18.06	116.5			1.326
EI-175	RH	0177	13/4	4.445		13.66	88.13	18.13	117.0			1.327
El-175	H6	0179	13/4	4.445		13.56	87.49	17.94	115.7			1.323
El-19	Н	0190	13/4	4.445	1.5 <i>w</i>	16.51	106.5	22.53	145.4	13.00	33.02	1.364
El-212	Н	0212	21/8	5.397	1.5 <i>w</i>	20.15	130.0	26.76	172.7	12.75	32.39	1.328
EI-225	S RH	0221	21/4	5.715 5.715	1.5 <i>w</i>	24.81 22.63	160.1	33.52	216.3	14.38	36.51	1.351
EI-225 EI-225	KH L	0225 0230	21/4 21/4	5.715 5.715	1.5 <i>w</i> 1.5 <i>w</i>	40.82	146.0 263.4	30.07 49.52	194.0 319.5	13.50 21.38	34.29 54.29	1.329 1.213
EI-225	R4N	0230	2½ 2½	6.350		27.89	179.9	37.02	238.9		54.29	1.328
EI-250	R6N	0249	2½ 2½	6.350	 1.5 <i>w</i>	27.09	179.9	36.78	237.3	 15.00	38.10	1.326
El-250	R6W	0250	21/2	6.350	1.5w	38.42	247.9	49.34	318.3	20.00	50.80	1.284
EI-3	RH1	0300	3	7.620	1.5w	40.28	259.9	53.56	345.6	18.00	45.72	1.330
EI-3	RH2	0301	3	7.620		40.28	259.9	53.56	345.6			1.330
EI-3	H4	6300	3	7.620		40.39	260.6	53.78	344.0			1.332
EI-4	R6	0400	4	10.16	1.5 <i>w</i>	71.61	462.0	95.22	614.4	24.00	60.96	1.330

Appendix X2 which permits the proper alignment of the joints by forces of magnetic attraction developed when the core is energized to high inductions. Bolting or clamping of the test specimen should be avoided as this introduces variation which is not reproducible. The cover plate (*D*) shown in the test fixture described in Appendix X2 should be used to provide a mild top pressure.

9. Procedure

- 9.1 *Preliminary Procedures*—Examine the test specimen for damage or improper preparation.
- 9.1.1 Select the proper number of laminations (Section 7) to form the test specimen.
- 9.1.2 Then weigh the portion of the test specimen that is to be used in the calculation of cross-sectional area in accordance with 8.2.
- 9.1.3 Then stack the test specimen (see 8.4) into a test coil of suitable size and number of turns appropriate for use in conducting the desired tests.
- Note 5—The number and type of tests desired, as well as available equipment, may influence the test coil selection. For these reasons the coil selected shall be a matter of agreement between the producer and the user.
- 9.1.4 Assemble the stacked test specimen and coil into the test jig as shown in Appendix X2 and connect into the appropriate test equipment of Fig. 1 or Fig. 2.
 - 9.2 Procedures for Core-Loss Measurements:
- 9.2.1 Connect the equipment as shown in Fig. 1 (see Note 6). Unless otherwise specified, the test coil shall be one of those of Table 1 for Category 1 cores.

NOTE 6—Switches S1 through S6 may be omitted if impedances of measurement instruments are such as to cause negligible error in results.

- 9.2.2 Determine the flux voltages induced in the secondary winding, N_2 , at the desired test inductions.
- 9.2.3 Open switches S4 and S5 and close switches S3, S6, S1, and S2. Set S8 to the lowest tap that permits excitation of the test specimen to an induction level of 15 kG (1.5 T). Set and maintain an induction of approximately 15 kG in the test specimen while tapping the edges of the stack with a small, soft-surfaced mallet. Observe the reading on the ammeter that measures primary current and continue tapping until the current reaches a minimum value. This procedure reduces the air gaps to a minimum value.
- 9.2.4 Demagnetize the specimen by slowly reducing the excitation from the lowest level of 9.2.3 to the lowest setting of the variable transformer or autotransformer. This shall be accomplished with a steady uniform motion, free of hesitations

- or reversals. Randomly variable contacts tend to generate magnetizing force transients which may degrade the quality of the demagnetization.
- 9.2.5 With S6 open and S4 and S5 closed, set the flux voltage, E_f , to the value corresponding to the lowest induction at which core losses are to be measured. Then read the wattmeter and record the power reading for that induction. In ascending order of inductions, repeat the measurement procedure for other inductions.
- 9.3 Procedures for RMS Excitation and RMS Exciting Power:
- 9.3.1 The equipment and test coil are connected as for core loss in 9.2.1.
- 9.3.2 Determine the flux voltages induced in the secondary winding, N_2 , at the desired test inductions.
- 9.3.3 Open switches S4 and S5 and close switches S3, S6, S1, and S2 as for core loss in 9.2.3. Then demagnetize the test specimen using the procedure described in 9.2.3 and 9.2.4.
- 9.3.4 With S3 and S4 open and S6, S1, and S2 closed, set the flux voltage to the value corresponding to the lowest desired test induction. Then open S2 and quickly read and record the rms voltage. Close S2 to check the induction setting; then open both S5 and S2 and quickly read and record the value of rms current. In ascending order of inductions, repeat the measurement procedure for other inductions.
- 9.4 Procedures for Apparent ac Magnetizing Force, H_z , and Impedance Permeability, μ_z :
- 9.4.1 For this measurement, the equipment is usually connected as shown in Fig. 2 and, unless otherwise specified, the test coil shall be one of those of Table 2 for Category 2 cores.
- 9.4.2 Determine the flux voltages induced in the secondary winding, N_2 , at the desired test inductions.
- 9.4.3 Close switch S1 and set S8 to the lowest tap which permits excitation of the test specimen to an induction level of 15 kG [1.5 T]. Set and maintain an induction of approximately 15 kG in the test specimen while tapping the edges of the stack with a small, soft-surfaced mallet. Observe the reading on the ammeter that measures primary current and continue tapping until the current reaches a minimum value. This procedure reduces the air gaps to a minimum value.
- 9.4.4 Observing the precautions of 9.2.4, demagnetize the test specimen by slowly and uniformly reducing the excitation to a zero field level.
- 9.4.5 With S1 open and S2 set to connect the flux voltmeter, V_f , to the secondary winding, N_2 , set the flux voltage to the value corresponding to the lowest test induction. Then open S2 and quickly read and record the value of the rms voltage drop

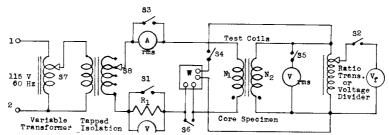


FIG. 1 Basic Circuit for the Measurement of Core Loss and Exciting Volt Amperes