INTERNATIONAL STANDARD

Second edition 2012-02-01

Corrosion of metals and alloys — Corrosivity of atmospheres — Guiding values for the corrosivity categories

Corrosion des métaux et alliages — Corrosivité des atmosphères — Valeurs de référence relatives aux classes de corrosivité

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9224:2012 https://standards.iteh.ai/catalog/standards/sist/ed08cea3-78ec-43e6-a8b7-7797ac5153e5/iso-9224-2012

Reference number ISO 9224:2012(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9224:2012 https://standards.iteh.ai/catalog/standards/sist/ed08cea3-78ec-43e6-a8b7-7797ac5153e5/iso-9224-2012

COPYRIGHT PROTECTED DOCUMENT

© ISO 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents

Forewo	ord	iv
Introdu	iction	v
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Principle	2
5	Prediction of corrosion attack after extended exposure	2
6 6.1	Specific criteria for calculation of corrosion rates of structural metals	3 3
6.2 6.3 6.4	Zinc materials Copper alloys Aluminium alloys	4 4 4
7	Long-term exposures	4
Annex	A (informative) Example of maximum corrosion attack after extended exposures for corrosivity categories	7
Annex	B (informative) Average initial corrosion rates and average steady corrosion rates in intervals relative to classified corrosivity categories	9
Annex Bibliog	C (informative) Prediction of corrosion attack of steels with regard to steel composition https://standards.iteh.ai/catalog/standards/sist/ed08cea3-78ec-43e6-a8b7- praphy	10 12

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 9224 was prepared by Technical Committee ISO/TC 156, Corrosion of metals and alloys.

This second edition cancels and replaces the first edition (ISO 9224:1992), which has been technically revised.

(standards.iteh.ai)

ISO 9224:2012 https://standards.iteh.ai/catalog/standards/sist/ed08cea3-78ec-43e6-a8b7-7797ac5153e5/iso-9224-2012

Introduction

The "corrosivity category" established in ISO 9223 is a general term suitable for engineering purposes, which describes the corrosion properties of atmospheres based on current knowledge of atmospheric corrosion.

Guiding values of corrosion attack can be used to predict the extent of corrosion attack in long-term exposures based on measurements of corrosion attack in the first-year exposure to the outdoor atmosphere in question. These values can also be used to determine conservative estimates of corrosion attack based on environmental information or corrosivity category estimates as shown in ISO 9223.

Corrosion attack estimates obtained by using the methods in this International Standard can be used to predict the useful life of metallic components and, in some cases, of metallic coatings exposed to outdoor atmospheres covered by ISO 9223. The corrosion attack results can also be used to determine whether or not protective measures, such as coatings, are required to achieve desired product lives. Other uses include the selection of construction materials for outdoor atmospheric service.

Guiding values of corrosion can be used as information for the selection of a protection method against atmospheric corrosion according to ISO 11303.

The guiding values in this International Standard are based on a large number of exposures in many locations throughout the world. However, the procedure used in this International Standard cannot possibly cover all the situations in natural environments and service conditions which can occur. In particular, situations that result in significant changes in the environment can cause major increases or decreases in corrosion rates. Users of this International Standard are cautioned to consult with qualified experts in the field of outdoor atmospheric corrosion in cases where localized corrosion can be more important than general attack. The specific issues of galvanic (bi-metallic) corrosion, pitting corrosion, crevice corrosion, environmental cracking and corrosion product wedging are not addressed in this International Standard.^{2-78ec-43e6-a8b7-}

7797ac5153e5/iso-9224-2012

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9224:2012 https://standards.iteh.ai/catalog/standards/sist/ed08cea3-78ec-43e6-a8b7-7797ac5153e5/iso-9224-2012

Corrosion of metals and alloys — Corrosivity of atmospheres — Guiding values for the corrosivity categories

1 Scope

This International Standard specifies guiding values of corrosion attack for metals and alloys exposed to natural outdoor atmospheres for exposures greater than one year. This International Standard is intended to be used in conjunction with ISO 9223.

Guiding corrosion values for standard structural materials can be used for engineering calculations. The guiding corrosion values specify the technical content of each of the individual corrosivity categories for these standard metals.

Annex A provides examples of calculated maximum corrosion attack after extended exposure (up to 20 years) for six standardized corrosivity categories.

Annex B provides presumed average initial and steady-state corrosion rates of standard metals in intervals relative to six standardized corrosivity categories.

Annex C provides the calculation procedure for corrosion attack of steels in regard to their composition.

2 Normative references 7797ac5153e5/iso-9224-2012

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 8044, Corrosion of metals and alloys — Basic terms and definitions

ISO 9223, Corrosion of metals and alloys — Corrosivity of atmospheres — Classification, determination and estimation

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 8044 and the following apply.

3.1

guiding corrosion value

corrosion rates, mass loss, penetration or other corrosion characteristics expressing the expected corrosive action of the atmospheric environment of a given corrosivity category towards standard metals

3.2

corrosion rate after extended exposure

corrosion rate after exposures longer than one year

3.3

average corrosion rate

rav

yearly corrosion rate calculated as an average value for the first 10 years of atmospheric exposure of a metal

3.4

steady-state corrosion rate

 r_{lin}

yearly corrosion rate derived from a long-term atmospheric exposure of a metal, not including the initial period

NOTE For the purposes of this International Standard, the corrosion rate after 10 years of exposure is considered constant.

Principle 4

The corrosion rate of metals and alloys exposed to natural outdoor atmospheres is not constant with exposure time. For most metals and alloys, it decreases with exposure time because of the accumulation of corrosion products on the surface of the metal exposed. The progress of attack on engineering metals and alloys is usually observed to be linear when the total damage is plotted against exposure time on logarithmic coordinates. This relationship indicates that the total attack, D, expressed either as mass loss per unit area or penetration depth, may be given as:

$$D = r_{\rm corr} t^b$$

where

iTeh STANDARD PREVIEW is the exposure time, expressed in years;

(1)

- t
- is the corrosion rate experienced in the first year, expressed in grams per square metre per year rcorr [g/(m²·a)] or micrometres per year (µm/a), in accordance with ISO 9223,
- b is the metal-environment-specific time exponent, usually less than 1.

Prediction of corrosion attack after extended exposure 5

This procedure should be used in cases where the extent of corrosion attack in the first year is available or can be estimated by the procedures in ISO 9223, and the desire is to predict the extent of attack after an extended exposure.

The attack prediction is calculated by substituting the values in Equation (1).

An appropriate b value is selected or calculated according to Clause 7. In cases where long-term metal loss data are available, use the b value from this data. In cases where the detailed composition of the metal is not known, select the B1 value from Table 2 for the metal or alloy in question. This is the b value to be used in Equation (1).

The B1 values were taken as the average time exponents from regression analyses of the flat panel long-term results of the ISO CORRAG atmospheric exposure programme^[1].

It is necessary to distinguish between metal-environment-specific time exponent, b, in Equation (1), estimated NOTE from exposure data, and B1 and B2 values assumed or calculated from the ISO CORRAG programme as generalized b values.

Table 3 contains values of the function t^b for time values up to 100 years with the B1 exponents to simplify the calculations. However, it is possible for Equation (1) not to apply to exposure beyond 20 years (see Clause 7 below for a discussion of long-term exposures).

In cases where it is important to estimate a conservative upper limit of corrosion attack after an extended exposure, the *b* value used in Equation (1) should be increased to account for uncertainties in the data. One way to do this is to add two standard deviations to the average value to obtain a value at the upper 95 % confidence level. For the four metals shown in Table 2, the standard deviations of the *b* values^[1] are:

- Carbon steel: 0,026 0
- Zinc: 0,030 0
- Copper: 0,029 5
- Aluminium: 0,039 5

NOTE Estimation of a conservative upper limit of corrosion attack after an extended exposure is based on uncertainties in b. This estimation does not take into account uncertainties in r_{corr} , which are defined in ISO 9223.

The B2 values in Table 2 include the two standard deviation additions and may be used where an upper limit of corrosion attack is desired when using the flat panel data from the ISO CORRAG programme. Table 3 also provides calculated values for the function, t^b , up to 100 years using B2 values for *b* (see Clause 7 for exposures beyond 20 years).

Annex A provides maximum corrosion attack for the standard metals covered in ISO 9223 for exposures up to 20 years for the six corrosion categories. These calculations are made using the time exponents given in Table 2.

6 Specific criteria for calculation of corrosion rates of structural metals

6.1 Steels

(standards.iteh.ai)

The protectiveness of rust layers on steels in atmospheric exposures is very strongly affected by the alloying elements in the steel_{ps}. Weathering steels in a particular, daye specific alloying additions to promote the formation of a protective rust layer that develops during the exposure. Other carbon and low-alloy steels vary significantly in their performance in atmospheric exposures depending on their specific alloy content. The calculation procedure for corrosion rates of steels in regard to their composition is given in Annex C.

The B1 and B2 values in Table 2 are estimated for carbon steel with the composition mentioned in Table 1^[2].

Element	Composition mass fraction %			
Carbon	0,056			
Silicon	0,060			
Sulfur	0,012			
Phosphorus	0,013			
Chromium	0,02			
Molybdenum	0,01			
Nickel	0,04			
Copper	0,03			
Niobium	0,01			
Titanium	0,01			
Vanadium	0,01			
Aluminium	0,02			
Tin	0,005			
Nitrogen	0,004			
Manganese	0,39			

Table 1 — Composition of steel for which the B1 and B2 values are estimated

Crevices and sheltered areas not exposed to rain impingement have been observed to experience significantly higher corrosion damage than predicted by Equation (1) in extended exposures. In addition, designs using weathering steels or unprotected carbon steels should anticipate that rain run-off leaves rust deposits on surfaces exposed to this run-off and permanent staining can occur to concrete, stone, masonry and other porous materials.

Steels that have been hardened to produce tensile strengths above about 1 000 MPa can suffer environmentally assisted cracking as a result of atmospheric corrosion.

6.2 Zinc materials

Zinc alloys also vary significantly in their atmospheric performance. The B1 values in Table 2 are obtained from commercially pure zinc alloys, but other zinc alloys have shown higher *b* values in atmospheric exposures^[3]. Electroplated zinc coatings, mechanically plated zinc coatings, and hot-dipped zinc coatings all have unique behaviours, and using Equation (1) with the B1 or B2 values might not accurately predict their performance. Zinc materials are particularly susceptible to attack from sulfur dioxide, and environments with high levels of this gas (sulfur dioxide range P_3) probably corrode at higher rates than predicted by Equation (1). In these cases, it is prudent to assume a corrosion rate that is linear with time, that is the *b* value is 1,0.

NOTE For more information on the use of zinc coatings for corrosion protection, see ISO 14713-1.

6.3 Copper alloys

Copper alloys, such as brasses (i.e. copper-zinc alloys), bronzes (i.e. copper-tin alloys), nickel silvers (i.e. copper alloys with zinc and nickel contents) and cupronickels, have atmospheric corrosion rates similar to, or somewhat less than, pure copper^{[4][5]}. The B1 and B2 values in Table 2 are adequate for all of these materials. Brasses with zinc contents above about 20% can experience dezincification in aggressive atmospheres. Two-phase brasses are most susceptible to this type of attack. It should also be noted that strain-hardened copper alloys can experience environmental cracking in natural atmospheres if their degree of strain hardening is high enough.

https://standards.iteh.ai/catalog/standards/sist/ed08cea3-78ec-43e6-a8b7-7797ac5153e5/iso-9224-2012

6.4 Aluminium alloys

Aluminium alloys experience both uniform and localized corrosion in natural atmospheres. As a result, the attack calculated by the above-mentioned methods can seriously underestimate maximum penetrations that occur. In addition, high strength, age hardening alloys that contain significant copper or copper-zinc levels can experience exfoliation corrosion. Aluminium products having a layer of galvanic protective alloy clad on the high strength alloy generally have much improved corrosion resistance in atmospheric exposures. Specific tempers have also been developed for high strength, age hardening alloys containing significant copper-zinc levels in order to prevent exfoliation or stress corrosion cracking. Alloys with good long-term corrosion behaviour used for structural, marine and building applications are covered in specific aluminium standards.

7 Long-term exposures

Equation (1) has been observed to be valid for exposures of up to 20 years' duration for the metals covered by this International Standard. However, Equation (1) is based on the fact that the corrosion product layers increase in thickness and degree of protection during the exposure. At some point in time beyond 20 years, the layer stabilizes and, at this point, the corrosion rate becomes linear with time, because the rate of metal loss becomes equal to the rate of loss from the corrosion product layer. Unfortunately, there are no experimental data that show when this might occur and there is no method of predicting this time. The use of Equation (1) beyond 20 years is probably justified in most cases, especially if the exposure is not much greater than 20 years.

However, an approach that yields the maximum estimate of attack is to assume that the corrosion rate becomes linear at 20 years of exposure. In this case, the corrosion rate may be calculated using Equation (2):

$$dD/dt = b r_{\rm corr} (t)^{b-1}$$

Then the total attack would be:

$$D(t > 20) = r_{\text{corr}} \left[20^b + b \left(20^{b-1} \right) \left(t - 20 \right) \right]$$
(3)

Table 4 gives values for the term $b(20^{b-1})$ for the *b* values shown in Table 2. Equation (3) provides larger corrosion attack estimates than Equation (1) for exposures beyond 20 years, but, in cases where a maximum attack estimate is required, Equation (3) is justified.

Table 2 — Time exponent values for predicting and estimating corrosion attack

Metal	B1	B2
Carbon steel	0,523	0,575
Zinc	0,813	0,873
Copper	0,667	0,726
Aluminium	0,728	0,807

	Steel		Zinc		Copper		Aluminium	
	B1	B2	B1	B2	B1	B2	B1	B2
b values	0,523	0,575	0,813	0,873	0,667	0,726	0,728	0,807
t (years)	(standards.iteh.ai)							
1	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
2	1,437 _{https}	1,490 //standards.ite	1,757 1,757	9224:2012 1,831 idards/sist/ed0	1,588 Rcead-/Xec-43	1,654 e6-a8b/-	1,656	1,750
3	1,776	1,881	77 2,443 153	e5/is 2,609 4-20	012 2,081	2,220	2,225	2,427
4	2,065	2,219	3,087	3,354	2,521	2,736	2,743	3,061
5	2,320	2,523	3,701	4,076	2,926	3,217	3,227	3,665
6	2,553	2,802	4,292	4,779	3,304	3,672	3,685	4,246
7	2,767	3,061	4,865	5,467	3,662	4,107	4,123	4,808
8	2,967	3,306	5,423	6,143	4,003	4,525	4,544	5,355
9	3,156	3,537	5,968	6,809	4,330	4,929	4,951	5,889
10	3,334	3,758	6,501	7,464	4,645	5,321	5,346	6,412
11	3,505	3,970	7,025	8,112	4,950	5,702	5,730	6,925
12	3,668	4,174	7,540	8,752	5,246	6,074	6,104	7,428
13	3,825	4,370	8,047	9,386	5,534	6,438	6,471	7,924
14	3,976	4,561	8,547	10,013	5,814	6,793	6,829	8,413
15	4,122	4,745	9,040	10,635	6,088	7,142	7,181	8,894
16	4,263	4,925	9,527	11,251	6,355	7,485	7,527	9,370
17	4,401	5,099	10,008	11,863	6,618	7,822	7,866	9,839
18	4,534	5,270	10,484	12,470	6,875	8,153	8,200	10,304
19	4,664	5,436	10,955	13,072	7,127	8,480	8,530	10,764
20	4,791	5,599	11,422	13,671	7,375	8,801	8,854	11,218

Table 3 — Metal-environment-specific time exponents for standard metals