

AMERICAN SOCIETY FOR TESTING AND MATERIALS 100 Barr Harbor Dr., West Conshohocken, PA 19428 Reprinted from the Annual Book of ASTM Standards. Copyright ASTM

Standard Test Method for Thiocyanate in Water ¹

This standard is issued under the fixed designation D 4193; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers the determination of dissolved thiocyanate in water, waste water, and saline water in the range from 0.1 to 2.0 mg/L. For higher concentrations, use an aliquot from the diluted sample.

1.2 This test method has been used successfully with reagent grade, natural, and treated sanitary effluent waters. It is the user's responsibility to assure the validity of the test method on any untested matrices.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazards, see Section 9.

2. Referenced Documents

2.1 ASTM Standards:

- D 1129 Terminology Relating to Water²
- D 1192 Specification for Equipment for Sampling Water and Steam²
- D 1193 Specification for Reagent Water²
- D 2036 Test Methods for Cyanides in Water³
- D 3370 Practices for Sampling Water from Closed Conduits²
- D 3856 Guide for Good Laboratory Practices in Laboratories Engaged in Sampling and Analysis of Water²
- D 4210 Practice for Interlaboratory Quality Control Procedures and a Discussion on Reporting Low-Level Data²
- E 60 Practice for Photometric and Spectrophotometric Methods for Chemical Analysis of Metals ⁴
- E 275 Practice for Describing and Measuring Performance of Ultraviolet, Visible, and Near Infrared Spectrophotometers ⁵

3. Terminology

3.1 Definitions-For definitions of terms used in this test

method, refer to Terminology D 1129.

4. Summary of Test Method

4.1 Thiocyanate reacts with ferric ions at a pH of <2 to form a colored complex which is determined colorimetrically at 460 nm and adheres to Beer's Law.

4.2 Industrial wastes may be highly colored and contain various interfering organic compounds which must be removed by adsorption on macroreticular resin ⁶ prior to analysis.

5. Significance and Use

5.1 Many natural waters contain thiocyanate from organic decomposition products and waste water discharges. Some industrial wastes, such as those from the steel industry, petroleum refining, and coal gasification, may contain significant concentrations of thiocyanate. Thiocyanate per se is not recognized as a toxic chemical compound. However, when chlorinated, thiocyanate is converted to the highly toxic and volatile cyanogen chloride.

5.1.1 For information on the impact of cyanogen compounds, see Appendix X1of Test Method D 2036.

6. Interferences

6.1 Hexavalent chromium interference is removed by adjusting the pH to 2 with concentrated nitric acid and adding ferrous sulfate. Raising the pH to 8.5-9 with sodium hydroxide precipitates Fe (III) and Cr (III) as the hydroxides, which are removed by filtration.

6.2 Reducing agents that reduce Fe (III) to Fe (II), thus preventing formation of the ferric thiocyanate complex, are destroyed by a few drops of hydrogen peroxide.

6.3 High concentrations of cyanide in proportion to the concentration of thiocyanate will react with the iron to form colored complexes.

6.4 Colored or interfering organic compounds must be removed by adsorption on macroreticular adsorption resin prior to analysis.

NOTE 1—Examples of interfering compounds are fluoride, phosphate, oxalate, arsenate, tartrate, borate, etc. which form complexes with iron.⁷ Production of a red color with ferric ions is typical of phenols, enols,

¹ This test method is under the jurisdiction of ASTM Committee D-19 on Water and is the direct responsibility of Subcommittee D19.06 on Methods for Analysis for Organic Substances in Water.

Current edition approved Sept. 10, 1995. Published November 1995. Originally published as D 4193 - 82. Last previous edition $D 4193 - 89 (1994)^{e_1}$.

² Annual Book of ASTM Standards, Vol 11.01.

³ Annual Book of ASTM Standards, Vol 11.02.

⁴ Annual Book of ASTM Standards, Vol 03.05. ⁵ Annual Book of ASTM Standards, Vol 14.01.

⁶ Spencer, R. R., Leenheer, J., and Marti, V. C., "Automated Colorimetric Determination of Thiocyanate, Thiosulfate, and Tetrathionate in Water," AOAC 94th Annual Meeting, Washington, DC, 1980.

⁷ Newman, A. A. (ed.), *Chemistry and Biochemistry of Thiocyanic Acid and Its Derivatives*, Academic Press, New York, NY, 1975.

oximes, and acetates. 8

7. Apparatus

7.1 Spectrophotometer or Filter Photometer, suitable for absorbance measurements at 460 nm and using a 5-cm cell. Filter photometers and photometric practices used in this test method shall conform to Practice E 60. Spectropho-tometers shall conform to Practice E 275.

7.2 *Column*—Chromatographic, glass, 12-mm inside diameter by 600-mm length, equipped with a reservoir and stop-cock, or a 50-mL buret with a glass wool plug and a funnel attached with a short piece of tubing.

8. Reagents and Materials

8.1 *Purity of Reagents*—Reagent-grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society. ⁹

8.2 *Purity of Water*—Unless otherwise indicated, references to water shall be understood to mean reagent water conforming to Specification D 1193, Type II.

8.3 Acetone.

8.4 Ferric Nitrate Solution (404 g/L)—Dissolve 404 g of ferric nitrate (Fe(NO₃)₃: 9H₂O) in about 800 mL of water. Add to this solution 80 mL of concentrated nitric acid. Mix and dilute to 1 L with water.

8.5 Hexane.

8.6 Hydrogen Peroxide Solution—(H₂O₂), 30 %.

8.7 Macroreticular Resin¹⁰, 18- to 50-mesh or equivalent.

8.8 Methyl Alcohol.

8.9 Nitric Acid—Concentrated HNO₃, sp gr 1.42.

8.10 *Nitric Acid* (0.1 M)—Mix 6.4 mL of concentrated nitric acid in about 800 mL of water. Dilute to 1 L with water and mix.

8.11 Thiocyanate Solution, Stock (1 mL = 1.0 mg SCN⁻)—Dissolve 1.673 g of potassium thiocyanate (KSCN) in water and dilute to 1 L.

8.12 *Thiocyanate Solution, Standard* (1 mL = 0.01 mg SCN⁻¹)—Dilute 10 mL of the stock thiocyanate solution to 1 L with water. Prepare fresh for each use. See 10.4.

8.13 Sodium Hydroxide Solution (4 g/L)—Dissolve 4 g of NaOH in about 800 mL of water. Mix and dilute to 1 L with water.

9. Hazards

9.1 Many samples will also contain cyanide. Because of the toxicity of cyanide, great care must be exercised in its handling. Acidification of cyanide solutions produces toxic

hydrocyanic acid (HCN). All manipulations must be done in the hood so that any HCN gas that might escape is safely vented.

9.2 Residual sample remains could be toxic; these should be disposed of properly.

10. Sampling

10.1 Collect the sample in accordance with Specification D 1192 and Practices D 3370.

10.2 Thiocyanate is stable in both the acid and alkaline pH range.

10.3 If the sample is to be preserved for cyanide, remove the sulfide before stabilization at a high pH (see section 10.3.2 of Test Methods D 2036). Cyanide can be converted into thiocyanate in the presence of sulfide at a high pH.

10.4 Thiocyanate is biodegradable. Samples that may contain bacteria should be preserved at pH < 2 by the addition of mineral acid and refrigerated.

11. Preparation and Use of Resin Column

11.1 Measure out sufficient resin to fill the column or columns into a beaker and add five times the resin volume of acetone. Stir for 1 h with gentle agitation.

11.2 Pour off the fines and the acetone from the settled resin and add five times the resin volume of hexane. Stir for 1 h.

11.2 Dour off onu

11.3 Pour off any fines that may be present and the hexane from the settled resin and add five times the resin volume of methanol. Stir for 15 min.

11.4 Pour off the methanol from the settled resin and add three times the resin volume of NaOH solution (4 g/L). Stir for 15 min.

11.5 Pour off the NaOH solution from the settled resin and add three times the resin volume of 0.1 M HNO₃. Stir for 15 min.

11.6 Pour off the HNO_3 solution from the settled resin and add three times the resin volume of reagent water. Stir for 15 min. Decant the water from the settled resin and use this purified resin to fill the column.

11.7 Attach the tip of the column to a source of reagent water, and displace the air from the column with water to the bottom of the reservoir (tip of the funnel if a buret is used).

11.8 Add the resin slurry to the reservoir (funnel) and allow it to fill the column by displacing the water to approximately 400-mm depth. This procedure will give a uniform column with the correct degree of packing.

11.9 When the resin has settled allow the water to drain to the top of the resin bed. At no time should the liquid level be below the top of the resin bed.

11.10 Add and drain five 5-mL increments of sample solution to the column. Fill the reservoir (funnel) with the remaining (125 mL) solution and allow it to pass through the column at a rate of 20 mL/min. Discard the first 50 mL of eluate.

11.11 Collect the next 50 mL of eluate in a clean, dry, graduated cylinder. Use this portion for color development.

11.12 Drain any remaining solution to the top of the resin bed. Regenerate the resin by the serial addition of five 5-mL and one 75-mL portions of NaOH solution (4 g/L), five 5-mL

⁸ Shriner, R. L., and Fuson, R. C., *Identification of Organic Compounds*, John Wiley & Sons, Inc., New York, NY, 1948.

⁹ Reagent Chemicals, American Chemical Society Specifications, American Chemical Society, Washington, DC. For suggestions on the testing of reagents not listed by the American Chemical Society, see Analar Standards for Laboratory Chemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeia and National Formulary, U.S. Pharmaceutical Convention, Inc. (USPC), Rockville, MD.

¹⁰ For the development of this test method, Amberlite XAD-8 has been used. Amberlite is a trademark of the Rohm and Haas Co., Independence Mall West, Philadelphia, PA 19105.