TECHNICAL REPORT

First edition 2013-02-01

Road vehicles — Calculation processes for the neck injury criteria in rear impact

Véhicules routiers — Méthodes de calcul des critères lésionnels au cou en choc arrière

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/TR 13330:2013 https://standards.iteh.ai/catalog/standards/sist/0ac264e1-16c4-449c-89d6-1dc27fed6c05/iso-tr-13330-2013

Reference number ISO/TR 13330:2013(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/TR 13330:2013 https://standards.iteh.ai/catalog/standards/sist/0ac264e1-16c4-449c-89d6-1dc27fed6c05/iso-tr-13330-2013

COPYRIGHT PROTECTED DOCUMENT

© ISO 2013

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Page

Contents

Forev	word		iv	
1	Scop	e		
2	Norn	native references	1	
3	Gene	eral recommendations		
4	Calculation process defined for each criterion			
	4.1	Upper neck loads		
	4.2	NIC[1][2]		
	4.3	Nij [<u>3</u>]	4	
	4.4	Nkm ([4],[5])		
	4.5	LNL ([6])		
Bibli	ograph	ly		

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/TR 13330:2013 https://standards.iteh.ai/catalog/standards/sist/0ac264e1-16c4-449c-89d6-1dc27fed6c05/iso-tr-13330-2013

ISO/TR 13330:2013(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

In exceptional circumstances, when a technical committee has collected data of a different kind from that which is normally published as an International Standard ("state of the art", for example), it may decide by a simple majority vote of its participating members to publish a Technical Report. A Technical Report is entirely informative in nature and does not have to be reviewed until the data it provides are considered to be no longer valid or useful.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/TR 13330 was prepared by Technical Committee ISO/TC 22, Road vehicles, Subcommittee SC 12, *Passive safety crash protection systems*.

<u>ISO/TR 13330:2013</u> https://standards.iteh.ai/catalog/standards/sist/0ac264e1-16c4-449c-89d6-1dc27fed6c05/iso-tr-13330-2013

Road vehicles — Calculation processes for the neck injury criteria in rear impact

1 Scope

This Technical Report recommends calculation procedures for several neck performance criteria for low-severity rear impact that are found in the literature. This Technical Report does not recommend any particular criteria or provide injury risk curves since the mechanisms of whiplash injury are neither proven nor validated. Calculations given in this Technical Report apply to mid-size adult male dummies only.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 6487, Road vehicles — Measurement techniques in impact tests — Instrumentation

SAE J211-1:2003, Instrumentation for Impact Test —Part 1: Electronic Instrumentation iTeh STANDARD PREVIEW

3 General recommendations and ards.iteh.ai)

Raw data (unfiltered) must be used as input in the calculation process (including filtering as a first step) described below in this Technical Reported VIR 1330:2013

https://standards.iteh.ai/catalog/standards/sist/0ac264e1-16c4-449c-89d6-Sign conventions and the reference frame are those described in SAE J211-1 and shown in Figure 1.

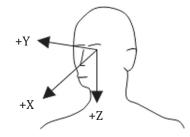


Figure 1 — Reference coordinate system

The positive x-axis will be directed forward.

The positive y-axis will be directed from the dummy's left to its right side.

The positive z-axis will be directed downward from head to toe.

For neck loads, polarities should be checked with the following manipulations:

- Fx > 0: head rearward, chest forward;
- Fy > 0: head leftward, chest rightward;
- Fz > 0: head upward, chest downward;
- Mx > 0: left ear toward left shoulder;

- Mx > 0: left ear toward left shoulder;
- My > 0: chin toward sternum;
- Mz > 0: chin toward left shoulder.

The neck forces and moment can be divided in several portions:

- The anterior portion of the neck force about the x-axis is defined as the positive portion of the neck force about the x-axis measurement. The posterior portion is defined as the negative portion.
- The extension portion of the neck force about the z-axis is defined as the positive portion of the neck force about the z-axis measurement. The compression portion is defined as the negative portion.
- The flexion portion of the neck moment calculated at the occipital condyles about the y-axis is defined as the positive portion of the measurement, while extension portion is considered as the negative portion.

Film or animation video should be available in order to check the main events, such as head contact with the head rest.

4 Calculation process defined for each criterion

4.1 Upper neck loads

4.1.1 Measurements used iTeh STANDARD PREVIEW

 $F_{x_upper_neck}(t)$: Upper neck force about the x-axis in N.

 $F_{z_upper_neck}(t)$: Upper neck force about the 2-axis in 3N:2013 https://standards.iteh.ai/catalog/standards/sist/0ac264e1-16c4-449c-89d6-1dc27fed6c05/iso-tr-13330-2013

4.1.2 Measurement filtering

The raw data are filtered using the filters as indicated in Table 1.

Table 1 — Filtering of the measurements used in the calculation process of the upper neck loads
following ISO 6487 or SAE J211-1

CFC	Measurements		
1000	$F_{x_upper_neck}(t)$	$F_{z_upper_neck}(t)$	

4.1.3 Zero offset measurements

Remove the offset of the filtered channels described in 4.1.1 "Measurements used". The offset is defined as the mean calculated over the last 10 ms of the measurement before the time of impact, i.e. the last 100 points for a data acquisition of 10 kHz.

4.1.4 Time window to define criteria for maximum/minimum value

The whole time window available is used to determine the minimum and/or maximum values.

4.1.5 Calculation process description

$$F_{x_upper_neck_max} = \max_{time_window} [F_{x_upper_neck}^{f\&o}(t)]$$

 $F_{z_upper_neck_max} = \max_{time_window} [F_{z_upper_neck}^{f\&o}(t)]$

$$F_{x_upper_neck_min} = \min_{time_window} [F_{x_upper_neck}^{f\&o}(t)]$$
$$F_{z_upper_neck_min} = \min_{time_window} [F_{z_upper_neck}^{f\&o}(t)]$$

where

 $F_{x_upper_neck}^{f\&o}(t)$ and $F_{z_upper_neck}^{f\&o}(t)$ are the upper neck forces in x and z directions after the filtering and correction of zero offset.

4.1.6 Dummy for which this criterion is calculated

This criterion can be calculated for any dummy for which measurements described above are available.

4.2 NIC^[1]^[2]

4.2.1 Measurements used

 γ_x head(t): Head linear acceleration about the x-axis measured at the centre of gravity in m/s².

 γ_{x} T1(t) : T1 linear acceleration about the x-axis in m/s².

4.2.2 Measurement filtering STANDARD PREVIEW

The raw data are filtered using the filters as indicated in Table 2.

Table 2 — Filtering of the measurements used in the calculation process of the NIC according to https://standards.iteh.a/cat.jcs/6487 or SAE 1211-1

CFC	Measurements
1000	$\gamma_{x_head}(t)$
180	$\gamma_{x_T1}(t)$

4.2.3 Zero offset measurements

Remove the offset of the filtered channels described in 4.2.1 "Measurements used". The offset is defined as the mean calculated over the last 10 ms of the measurement before the time of impact, i.e. the last 100 points for a data acquisition of 10 kHz.

4.2.4 Time window to define criteria for maximum value

The time window to evaluate maximum NIC is until the time of end of head restraint contact.

4.2.5 Calculation process description

$$NIC = \max_{time_window} \left(0.2^* \left(\gamma_{x_T1}^{f\&o}(t) - \gamma_{x_head}^{f\&o}(t) \right) + \left[\int_0^t (\gamma_{x_T1}^{f\&o}(t) - \gamma_{x_head}^{f\&o}(t)) \right]^2 \right)$$

where

 $\gamma_{x_{T1}}^{f\&o}(t)$ and $\gamma_{x_{head}}^{f\&o}(t)$ are the T1 × and head x linear accelerations after the filtering and correction of zero offset.

If T1 \times is measured at two locations, e.g. left and right, T1 \times is the mean of the two location measurements. Firstly, filter each T1 \times channel with CFC180, then calculate an average channel by adding both channels and dividing by 2. Finally, determine the positive maximum between time zero and the time of end of head restraint contact.

Constants of integration at time zero are 0 m/s.

4.2.6 Filtering after calculation process

NIC should not be filtered after calculation.

4.2.7 Dummy for which this criterion is calculated

This criterion can be calculated for any mid-size male dummy for which measurements described above are available.

4.3 Nij [3]

4.3.1 Measurements used

 $F_{x_upper_neck}(t)$: Upper neck force about the x-axis in N. **PREVIEW**

 $F_{z_upper_neck}(t)$: Upper neck force about the z-axis in N. iteh.ai)

 $M_{y_upper_neck}(t)$: Upper neck moment about the waxis in N.m.

4.3.2 Measurements filtering 1dc27fed6c05/iso-tr-13330-2013

The raw data are filtered using the filters as indicated in Table 3.

Table 3 — Filtering of the measurements used in the calculation process of the Nij according to ISO 6487 or SAE J211-1

CFC	Measurements		
1000	$F_{x_upper_neck}(t)$	$F_{z_upper_neck}(t)$	
600	$M_{y_upper_neck}(t)$		

4.3.3 Zero offset measurements

Remove the offset of the filtered channels described in 4.3.1 "Measurements used". The offset is defined as the mean calculated over the last 10 ms of the measurement before the time of impact, i.e. the last 100 points for a data acquisition of 10 kHz.

4.3.4 Time window to define criteria for maximum value

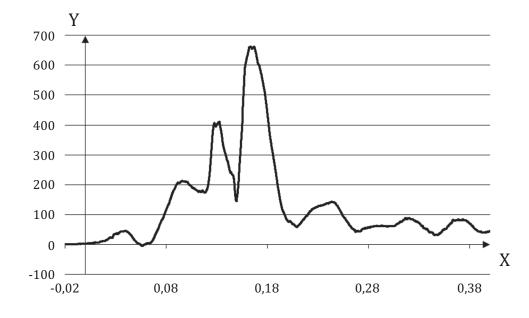
The maximum of the Nij components should be calculated on the whole time window available.

4.3.5 Calculation process description

$$Nij = \max_{time_window} \left(\frac{F_{z_upper_neck}^{f\&o}(t)}{F_{zc}} + \frac{MOC_{y}^{f\&o}(t)}{Myc} \right)$$

where

$F_{z_upper_neck}^{f\&o}(t)$	is the upper neck force about the z-axis either in compression or in tension after the filtering and correction of zero offset;
$MOC_{y}^{f\&o}(t)$	is the moment calculated at the occipital condyles about the y-axis either in flexion or in extension after the filtering and correction of zero offset;
$F_{\rm zc}$ and $M_{\rm yc}$	are the critical values for upper neck force about the z-axis and for the moment calculated at the occipital condyles about the y-axis.


The critical values (intercepts) used are included in Table 4.

	$F_{\rm zc}$ tension (N)	F_{zc} co	ompression (N)	M _{yc} flexion (Nm)		$M_{\rm yc}$ extension (Nm)
	6806		D -6160	$\mathbf{D} \mathbf{P} \mathbf{K}_{310} \mathbf{H}$	VV	-135
	$MOC_{y}^{f\&o}(t) = M_{y_upper_neck}^{f\&o}(t) - \begin{pmatrix} standards.iteh.ai \\ D^{*}F_{f\&o} \\ x_upper_neck}^{(t)}(t) \\ \underline{ISO/TR\ I3330:2013} \end{pmatrix}$					
W	here http	s://standard	ls.iteh.ai/catalog/standard 1 dc27 fed6c05/iso-	ls/sist/0ac264e1-16c4-449 tr-13330-2013	c-89d	6-
	F ^{f&o} x_upper_neck(t) is the server		about the x-axis afte	er the	e filtering and correction of
	Mf&o y_upper_neck ⁽ⁱ	;) is th of z	ne upper neck mom ero offset (see <u>Figu</u>	5	after	the filtering and correction
	D		is the distance between the measurement centre of the upper neck load cell and the occipital condyles about the z-axis.			

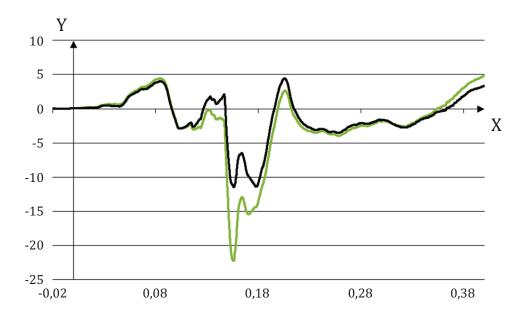
Checking the value of D distance relevant for the sensor model used with the sensor manufacturer is required.

 $MOC_{V}^{f\&o}(t)$ should not be filtered after calculation.

Examples of upper neck forces and upper neck moments are given in Figures 2 and 3.

Key

X time in seconds


Y upper neck force

iTeh STANDARD PREVIEW

Figure 2 — Example of $F_{z_upper_neck}^{f\&o}$ (t) (upper neck force about the z-axis after the filtering and correction of zero offset)

<u>ISO/TR 13330:2013</u>

https://standards.iteh.ai/catalog/standards/sist/0ac264e1-16c4-449c-89d6-1dc27fed6c05/iso-tr-13330-2013

Key

- X time in seconds
- Y upper neck moment

iTeh STANDARD PREVIEW

Figure 3 — Example of $M_{y,upper_neck}^{f,\&o}$ (upper neck moment about the y-axis after the

filtering and correction of zero offset) (black curve) and $MOC_y^{f\&O}(t)$ (moment calculated at the occipital condyles about the y-axis either in flexion or in extension after the filtering and correction of zero offset) (green curve)

To determine the Nij maximum value, four intermediate calculations must be made. These calculations use the upper neck force about the z-axis $F_{z_upper_neck}^{f\&o}(t)$ (in tension or in compression) with the

moment calculated at the occipital condyles about the y-axis $MOC_y^{f\&o}(t)$ (in flexion or extension). This results in four combinations of the two data channels:

Ncf where $F_{z_upper_neck}^{f\&o}(t)$ is in compression and $MOC_y^{f\&o}(t)$ in flexion;

Nce where $F_{z_upper_neck}^{f\&o}(t)$ is in compression and $MOC_y^{f\&o}(t)$ in extension;

Ntf where $F_{z_upper_neck}^{f\&o}(t)$ is in tension and $MOC_y^{f\&o}(t)$ in flexion;

Nte where $F_{z_upper_neck}^{f\&o}(t)$ is in tension and $MOC_y^{f\&o}(t)$ in extension.

The tension portion of the upper neck force about the z-axis is defined as the positive portion of the upper neck force about the z-axis measurement. The compression portion is defined as the negative portion (see example in Figure 4). In the same manner, the flexion portion of the moment calculated at the occipital condyles about the y-axis is defined as the positive portion of the measurement, while the extension portion is considered as the negative portion (see example in Figure 5). In each of these combinations, when a data channel is not in its designated load type its value is to be set to zero. For example, to calculate the Nce (compression – extension) value, all data values of $F_Z^{f\&o}(t)$ which do not represent compressive loading are set to zero. Likewise, all data values of $M_Y^{f\&o}(t)$ which do not represent an extension loading are set to zero.