NORME INTERNATIONALE INTERNATIONAL STANDARD

Edition 1.1 2001-11

Edition 1:1998 consolidée par l'amendement 1:2001 Edition 1:1998 consolidated with amendment 1:2001

Dispositifs à semiconducteurs -Dispositifs discrets -

Partie 9: Transistors bipolaires à grille isolée (IGBT)

Semiconductor devices – Discrete devices –

Part 9: Insulated-gate bipolar transistors (IGBTs)

https://standards.iteh.ar

b47f-4bdb-9640-7a51a44a70f3/iec-60747-9-1998

Numéro de référence Reference number CEI/IEC 60747-9:1998+A1:2001

Numérotation des publications

Depuis le 1er janvier 1997, les publications de la CEI sont numérotées à partir de 60000. Ainsi, la CEI 34-1 devient la CEI 60034-1.

Editions consolidées

Les versions consolidées de certaines publications de la CEI incorporant les amendements sont disponibles. Par exemple, les numéros d'édition 1.0, 1.1 et 1.2 indiquent respectivement la publication de base, la publication de base incorporant l'amendement 1, et la publication de base incorporant les amendements 1 et 2.

Informations supplémentaires sur les publications de la CEI

Le contenu technique des publications de la CEI est constamment revu par la CEI afin qu'il reflète l'état actuel de la technique. Des renseignements relatifs à cette publication, y compris sa validité, sont disponibles dans le Catalogue des publications de la CEI (voir ci-dessous) en plus des nouvelles éditions, amendements et corrigenda. Des informations sur les sujets à l'étude et l'avancement des travaux entrepris par le comité d'études qui a élaboré cette publication, ainsi que la liste des publications parues, sont également disponibles par l'intermédiaire de:

- Site web de la CEI (www.iec.ch)
- Catalogue des publications de la CEI

Le catalogue en ligne sur le site web de la CEI (www.iec.ch/catlg-f.htm) vous permet de faire des recherches en utilisant de nombreux critères, comprenant des recherches textuelles, par comité d'études ou date de publication. Des informations en ligne sont également disponibles sur les

nouvelles publications, les publications remplacées ou retirées, ainsi que sur les corrigende.

IEC Just Published

Ce résumé des dernières publications parues (<u>www.iec.ch/UP.htm</u>) est ausei disponible par courrier électronique. Veuillez prendre contact avec le Service client (voir ci-dessous) pour plus d'informations.

Service clients

Si vous avez des questions au sujet de cette publication ou avez besoin de renseignements supplémentaires, prenez contact avec le Service clients:

Email: <u>custserv@iec.ch</u> Tél: +41 22 919 02 11 Fax: +41 22 919 03 00

Fax: +41 22 919 03 00

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC catalogue of publications (see below) in addition to new editions, amendments and cortigenda. Information on the subjects under consideration and work in progress undertaken by the technical dommittee which has prepared this publication, as well as the list of publications issued, is also available from the following:

IEC Web Site (<u>www.iec.ch</u>)

Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/catlg-e.htm) enables you to search by a variety of criteria including text searches, technical committees and date of publication. Online information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

IEC Just Published

This summary of recently issued publications (<u>www.iec.ch/JP.htm</u>) is also available by email. Please contact the Customer Service Centre (see below) for further information.

Customer Service Centre

If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

Email: <u>custserv@iec.ch</u> Tel: +41 22 919 02 11 Fax: +41 22 919 03 00

NORME INTERNATIONALE INTERNATIONAL STANDARD

CEI IEC 60747-9

Edition 1.1

2001-11

Edition 1:1998 consolidée par l'amendement 1:2001 Edition 1:1998 consolidated with amendment 1:2001

Dispositifs à semiconducteurs -Dispositifs discrets -

Partie 9: Transistors bipolaires à grille isolée (IGBT)

Semiconductor devices – Discrete devices –

Part 9: Insulated-gate bipolar transistors (IGBTs)

-b47f-4bdb-9640-7a51a44a70f3/iec-60747-9-1998

© IEC 2001 Droits de reproduction réservés — Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission3, rue de Varembé Geneva, SwitzerlandTelefax: +41 22 919 0300e-mail: inmail@iec.chIEC web site http://www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия CODE PRIX PRICE CODE

Pour prix, voir catalogue en vigueur For price, see current catalogue

SOMMAIRE

AV	ANT-I	PROPOS	12
IN	TROD	UCTION	16
1	Dom	aine d'application	18
2	Réfé	rences normatives	18
3	Défir	nitions	18
	3 1	Termes généraux	18
	3.2	Termes relatifs aux valeurs limites et aux caractéristiques: tensions et courants	
	3.3	Termes relatifs aux valeurs limites et caractéristiques; autres caractéristiques	22
4	Sym	boles littéraux	26
	4.1	Généralités	26
	4.2	Autres indices généraux	26
	4.3	Liste des symboles littéraux	26
		4.3.1 Tensions	26
		4.3.2 Courants	26
		4.3.3 Autres grandeurs électriques	28
		4.3.4 Amplitudes thermiques	28
		4.3.5 Temps	28
5	Vale	urs limites et caractéristiques essentielles	30
	5.1	Généralités	30
		5.1.1 Méthodes de spécification	30
		5.1.2 Températures recommandées	30
	5.2	Conditions pour les valeurs limites	30
		5.2.1 Transistors bipolaires à grille isolée à température ambiante spécifiée	30
		5.2.2 Transistors bipolaires à grille isolée à température de boîtier spécifiée	30
	5.3	Valeurs limites	30
		5.3.1 Tension collecteur-emetteur avec tension grille-émetteur nulle (V _{CES})	30
		5.3.2 Tension grille-émetteur avec tension collecteur-émetteur nulle (V_{GES})	30
		5.3.3 Courant (continu) de collecteur $(I_{\rm C})$	30
	<	5.3.4 Courant collècteur de pointe répétitif (<i>I</i> _{CRM})	30
		53.5 Courant collecteur de pointe non répétitif (<i>I</i> _{CSM})	32
		5.3.6 Zone de fonctionnement de sécurité	32
		5.3.7 Dissipation totale de puissance (P_{tot})	32
		5.3.8 Temperature virtuelle de jonction (T_{vj})	
		à température de boîtier (7 _c) (pour les transistors bipolaires à grille isolee	32
		5.3.10 Température de stockage (<i>T</i> _{stg})	32
		5.3.11 Force de fixation (F)	32
		5.3.12 Tension de maintien collecteur-émetteur (V _{CE*sus})	32
		5.3.13 Aire de sécurité en inverse (RBSOA)	32
		5.3.14 Aire de sécurité en court-circuit (SCSOA)	32

CONTENTS

1	Sco	pe		19
2	Norr	native re	ferences	19
3	Defi	nitions		
-	3.1	Genera	al terms	10
	3.2	Terms	related to ratings and characteristics: voltages and currents_	10
	3.3	Terms	related to ratings and characteristics; other characteristics	2
4	Lette	er svmbo		27
	4 1	Genera	al	27
	4.7		nal general subscripts	27 27
	4.3	l ist of	letter symbols	27 27
		4.3.1	Voltages	
		4.3.2	Currents	27
		4.3.3	Other electrical magnitudes.	29
		4.3.4	Thermal magnitudes	29
		4.3.5	Times	29
5	Esse	ential rati	ings and characteristics	31
	5.1	Genera		31
		5.1.1	Rating methods.	31
		5.1.2	Recommended temperatures	31
	5.2	Rating	conditions	31
		5.2.1	Ambient-rated IGBUs	31
		5.2.2 <	Case-rated IGBTs	31
	5.3	Rating	s (fimiting values)	
		5.3.1	Collector emitter voltage with gate-emitter short-circuited (V _{CES})	31
		5.3.2	Gate-emitter voltages with collector-emitter short-circuited (V _{GES})	31
		5.3.3	(Continuous) collector (direct) current (I _C)	31
		5.3.4	Repetitive peak collector current (I _{CRM})	31
		5 3.5	Non-repetitive peak collector current (I _{CSM})	33
		5.3.6	Safe operating area	33
		5.3.7	Total power dissipation (P _{tot})	33
		5.3.8	Virtual junction temperature (T_{vj})	33
		5.3.9	Case temperature (T_c) (for case-rated IGBTs)	33
		5.3.10	Storage temperature (T _{stg})	33
		5.3.11	Mounting force (F)	33
		5.3.12	Collector-emitter sustaining voltage (V _{CE*sus})	33
		5.3.13	Reverse biased safe operating area (RBSOA)	33
		5.3.14	Short-circuit safe operating area (SCSOA)	33
		5.3.15	Rated electrostatic discharge voltage	35

		ļ	5.4	Caracte	éristiques	34
				5.4.1	Tension de claquage collecteur (-émetteur) avec tension grille-émetteur	
					nulle (V _{(BR)CES})	34
				5.4.2	Tension de saturation collecteur-émetteur (V _{CE(sat)})	34
				5.4.3	Tension de seuil grille-émetteur (V _{GE(TO)})	34
				5.4.4	Courant collecteur résiduel (I _{CES})	34
				5.4.5	Courant de fuite de grille (<i>I</i> _{GES})	34
				5.4.6	Dissipation d'énergie à l'établissement (par impulsion) (E_{on})	34
				5.4.7	Dissipation d'énergie à la coupure (par impulsion) (<i>E</i> off)	34
				5.4.8	Capacités	36
				5.4.9	Charge de grille (Q _{ge})	36
				5.4.10	Temps de commutation	36
				5.4.11	Résistance thermique jonction-boîtier (<i>R</i> th(j-c))	36
				5.4.12	Résistance thermique jonction-ambiante (R _{th(j-a)})	36
				5.4.13	Impédance thermique transitoire jonction-boîtier $(Z_{th}(\lambda_c))$	38
				5.4.14	Impédance thermique transitoire jonction-ambiante (Zth(j-a))	38
				5.4.15	Impédance thermique jonction-boîtier dans des conditions d'impulsion $(Z_{th(j-c)p})$ (principalement pour les transistors bipolaires à grille isolée de faible puissance, lorsque cela s'applique)	38
				5116	Impédance thermique ionction ambiante date des conditions d'impulsion	
				5.4.10	$(Z_{th(j-a)p})$ (principalement pour les transistors bipolaires à grille isolée de faible puissance, lorsque cela s'applique)	38
				5.4.17	Caractéristiques mécaniques et autres données	38
	6	;	Métho	odes d'e		38
		(5.1	Généra	alités	38
		(6.2	Méthoo	les d'essai	38
				6.2.1	Tension de maintien collecteur-émetteur (V _{CE*sus})	38
				6.2.2	Tensions collecteur-émetteur (V _{CES} , V _{CER} , V _{CEX})	42
ht				6.2.3	Tension grille-émetteur (±V _{GES})	.744_19
				6.2.4	Aire de sécurité en inverse (RBSOA)	46
				6.2.5	Aire de securité en court-circuit	48
				6.2 6	Tension de décharge électrostatique	54
				6.2.7	Courant collegeeur	56
	7	' I	Métk	odes de	ntesure	58
		•	7.1	Genéra	nités	58
				7.1.1	Rréçautions générales	58
				7.1.2	Précautions de manipulation	60
				7.1.3	Symbole graphique des transistors bipolaires à grille isolée	60
	I	•	7.2	Méthoo	les de mesure	60
				7.2.1	Tension de seuil grille-émetteur (V _{GE(TO)})	60
				7.2.2	Courant de fuite de grille (<i>I</i> _{GES})	62
				7.2.3	Dissipation de puissance à l'établissement (P_{on}), dissipation d'énergie à l'établissement (par impulsion) (E_{on})	64
				7.2.4	Dissipation de puissance à la coupure (P_{off}), dissipation d'énergie à la coupure (E_{off})	68
				7.2.5	Temps total d'établissement (t_{on}) , temps de retard à l'établissement $(t_{d(on)})$, temps de croissance (t_{r})	72
				7.2.6	Temps total de coupure (t_{off}), temps de retard à la coupure ($t_{d(off)}$), temps de décroissance (t_{f})	76

	5.4	Charac	cteristics	35
		5.4.1	Collector(-emitter) breakdown voltage with gate-emitter short-circuited	
			(<i>V</i> _{(BR)CES})	35
		5.4.2	Collector-emitter saturation voltage (V _{CE(sat)})	35
		5.4.3	Gate-emitter threshold voltage (V _{GE(TO)})	35
		5.4.4	Collector cut-off current (<i>I</i> _{CES})	35
		5.4.5	Gate leakage current (I _{GES})	35
		5.4.6	Turn-on energy (per pulse) (<i>E</i> _{on})	35
		5.4.7	Turn-off energy (per pulse) (<i>E</i> _{off})	35
		5.4.8	Capacitances	37
		5.4.9	Gate charge (Q _{ge})	37
		5.4.10	Switching times	37
		5.4.11	Thermal resistance junction to case (R _{th(j-c)})	37
		5.4.12	Thermal resistance junction to ambient (R _{th(j-a)})	37
		5.4.13	Transient thermal impedance junction to case (Zth()-c))	39
		5.4.14	Transient thermal impedance junction to ambient $(Z_{th(j-a)})$	39
		5.4.15	Thermal impedance junction to case under pulse conditions $(Z_{th(j-c)p})$	
			(where applicable, mainly for low-power IGBTs)	39
		5.4.16	Thermal impedance junction to ambient under pulse conditions $(Z_{th(j-a)p})$	20
		F 4 4 7	(where applicable, mainly for low-power (GBIs).	39
0		5.4.17	Mechanical characteristics and other data	39
6	Metho	Das of te	esting	39
	6.1	Genera	al	39
	6.2	Test m	ethods	39
		6.2.1	Collector-emitter sustaining voltage (V _{CE*sus})	39
		6.2.2	Collector-emitter voltages (V _{CES} , V _{CER} , V _{CEX})	43
		6.2.3	Gate-emitter voltage (+VGEs)	45
		6.2.4 🗸	Reverse biased safe operating area (RBSOA)	47
		6.2.5	Short-circuit safe operating area	49-199
		6.2.6	Electrostatic discharge voltage	55
		6.2.7	Collector corrent	57
7	Meth	ods of n	heasurement	59
	7.1	Genera	alp	59
		71.1	General precautions	59
		7.1.2	Handling precautions	61
		7.1.3	Graphical symbol of IGBT	61
	7.2	Measu	ring methods	61
		7.2.1	Gate-emitter threshold voltage (V _{GE(TO)})	61
		7.2.2	Gate leakage current (I _{GES})	63
		7.2.3	Turn-on power dissipation (P_{on}), turn-on energy (per pulse) (E_{on})	65
		7.2.4	Turn-off power dissipation (P_{off}), turn-off energy (per pulse) (E_{off})	69
		7.2.5	Turn-on time (t_{on}), turn-on delay time ($t_{d(on)}$), rise time (t_r)	73
		7.2.6	Turn-off time (t_{off}), turn-off delay time ($t_{d(off)}$), fall time (t_{f})	77

		7.2.7	Résistance thermique jonction-boîtier ($R_{th(j-c)}$) et impédance thermique transitoire jonction-boîtier ($Z_{th(j-c)}$)	78
		7.2.8	Tension de saturation collecteur-émetteur (V _{CEsat})	88
		7.2.9	Courant résiduel collecteur-émetteur (<i>I</i> _{CES} , <i>I</i> _{CER} , <i>I</i> _{CEX})	90
		7.2.10	Temps de commutation (t_{don} , t_r , t_{on}) et énergie de commutation (E_{on})	92
		7.2.11	Capacité d'entrée (C _{ies})	96
		7.2.12	Capacité de sortie (C _{oes})	98
		7.2.13	Capacité de transfert inverse (C _{res})	100
8	Réce	ption et	fiabilité	102
	8.1	Exigen	ces générales	102
	8.2	Exigen	ices spécifiques	102
		8.2.1	Liste des essais d'endurance	102
		8.2.2	Conditions pour les essais d'endurance	102
		8.2.3	Critères de défaillance et caractéristiques définissant la défaillance pour les essais de réception	102
		8.2.4	Critères de défaillance et caractéristiques définissant la défaillance pour les essais de fiabilité	102
		8.2.5	Procédure à suivre en cas d'erreur d'essai	102
		8.2.6	Essais d'endurance et méthodes d'essais	104
	8.3	Essais	de type et essais individuels	108
		8.3.1	Essais de type	108
		8.3.2	Essais individuels	110
		8.3.3	Méthodes de mesure et méthodes d'essais	112
Anı	nexe A	(norma	ative) Méthode de mesure de la tension de claquage collecteur-émetteur	·114
Anı dar	nexe B ns des	(norma conditio	ative) Méthode de mesure du temps de commutation sur charge inductivons spécifiées	ve 118
Anı	nexe C	(norm	ative) Aire de sécurité en direct (FBSOA)	122
s://sta Ani	nexe D	(inform	native) Rivoture du boîtier	130
7 (11)				
Fig	ure 1 -	- Circui	t de mesure de la tension de maintien collecteur-émetteur V _{CE*sus}	40
Fig	ure 2 -	- Aire d	e fonctionnement du courant collecteur	42
Fig	ure 3	Circui	t de mesure des tensions collecteur-émetteur V _{CES} , V _{CER} , V _{CEX}	44
Fig	ure 4 -	- Circui	t de mesure de la tension grille-émetteur ±V _{GES}	46
Fia	ure 5 -	- Circui	t de mesure de l'aire de sécurité en inverse (RBSOA)	46
Fig à l'	ure 6 - ouverti	- Forme	es d'ondes de la tension grille-émetteur V_{GE} et du courant collecteur I_{C}	48
Fia	ure 7 -	- Circui	t de mesure de l'aire de sécurité en régime de court-circuit (SCSOA1)	50
Fig	ure 8 - sion V	- Forme	es d'ondes de la tension grille-émetteur V_{GE} du courant collecteur I_C et d	e la 50
Fig		_ Aire d	e sécurité en régime de court-circuit 2 (SCSOA2)	50 جم
r ig Fie			c secondo en regime de court-circuit 2 (CCCCA2)	JZ
rig	ure 10			54
Fig	ure 11	– Circu	In de mesure du courant collecteur: méthode en courant continu	56
Fig	ure 12	– Circu	uit de mesure du courant collecteur: méthode en impulsion	58
Fig	ure 13	– Sché	ma de base pour la mesure de la tension de seuil grille-émetteur	62
Гia	ure 14	– Circi	uit nour la mesure du courant de fuite de grille	64

		7.2.7	Thermal resistance junction to case $(R_{th(j-c)})$ and transient thermal impedance junction to case $(Z_{th(j-c)})$	79
		7.2.8	Collector-emitter saturation voltage (V _{CEsat})	89
		7.2.9	Collector-emitter cut-off current (<i>I</i> _{CES} , <i>I</i> _{CER} , <i>I</i> _{CEX})	91
		7.2.10	Turn-on intervals (t_{don} , t_r , t_{on}) and turn-on energy (E_{on})	93
		7.2.11	Input capacitance (C _{ies})	97
		7.2.12	Output capacitance (C _{oes})	99
		7.2.13	Reverse transfer capacitance (C _{res})	101
8	Acce	ptance a	and reliability	103
	8.1	Genera	al requirements	103
	8.2	Specifi	c requirements	103
		8.2.1	List of endurance tests	103
		8.2.2	Conditions for endurance tests	103
		8.2.3	Failure-defining characteristics and failure criteria for acceptance tests.	103
		8.2.4	Failure-defining characteristics and failure criteria for reliability tests	103
		8.2.5	Procedure in case of a testing error	103
		8.2.6	Endurance tests and test methods	105
	8.3	Type te	ests and routine tests	109
		8.3.1	Type tests	109
		8.3.2	Routine tests	111
		8.3.3	Measuring and test methods	113
Anr Anr	iex A iex B	(normati	ive) Measuring method for collector emitter breakdown voltage ive) Measuring method for inductive load turn-off current under	115
spe	cified	conditio		119
Anr	iex C	(normat	ive) Horward blased safe operating area (FBSOA)	123
Anr	iex D	(informa	tive) Case rupture	131
//sta	andaro	ds.iteh.a	6 / 6 / 5 stand rds / ec/3 a05249-b471-4bdb-9640-7a51a44a7013/iec-60	747-9-
Fig	ure 1	- Circuit	for measuring the collector-emitter sustaining voltage V _{CE*sus}	41
Fig	ure 2	– Opera	ting locus of the collector current	43
Fig	ure 3	- Circuit	t for measuring the collector-emitter voltages V_{CES} , V_{CER} , V_{CEX}	45
Fig	ure 4	- Circuit	for testing the gate-emitter voltage $\pm V_{GES}$	47
Fig	ure 5	– Test c	ircuit of reverse safe operating area (RBSOA)	47
Fig	ure 6	– Wavef	forms of gate-emitter voltage V_{GF} and collector current I_{C} during turn-off	49
Fia	ure 7	– Circuit	t for testing safe operating pulse duration at load short circuit (SCSOA1)	51
Fig dur	ure 8 ing lo	– Wavef ad short	forms of gate-emitter voltage V_{GE} , collector current I_C and voltage V_{CE} -circuit condition SCSOA1	51
Fia	ure 9	– Short-	circuit safe operating area 2 (SCSOA2)	53
Fig	ure 10) – Wave	eforms during SCSOA2	55
Eig	uro 14		it for measuring collector current: d.c. method	50
r igi				
rig	ure 12	∠ – Circu	III IOI measuring collector current: pulse method	59
Fig	ure 13	3 – Basic	c circuit for measuring the gate-emitter threshold voltage	63
Fig	ure 14	4 – Circu	it for measuring the gate leakage current	65

Fig pe	gure 15 – Circuit pour la détermination de la dissipation de puissance et/ou d'énergie ndant la durée de l'établissement	66
Fig V _C	gure 16 – Formes d'ondes du courant collecteur $I_{\rm C}$, de la tension collecteur-émetteur $E_{\rm E}$ et de leur produit $I_{\rm C} \cdot V_{\rm CE}$ = $P_{\rm on}$ au cours de l'établissement. $t_{\rm i}$ est le temps	
d'ii	ntégration pour le calcul de la dissipation en énergie à l'établissement:	66
Fig à l	gure 17 – Circuit pour la détermination de la dissipation de puissance et/ou d'énergie a coupure pour une charge inductive <i>L</i>	68
Fig	gure 18 – Formes d'ondes du courant collecteur $I_{\rm C}$, de la tension collecteur-émetteur	
V _C ca	$_{\rm E}$ et de leur produit $I_{\rm C} \cdot V_{\rm CE}$ = $P_{\rm off}$ à la coupure. $t_{\rm i}$ est le temps d'intégration pour l'une dissipation en énergie à la coupure:	70
Fig ret	gure 19 – Circuit pour la mesure du temps total d'établissement t_{on} , du temps de tard à l'établissement $t_{d(on)}$ et du temps de croissance t_{r}	72
Fig I _C	gure 20 – Formes d'ondes de la tension grille-émetteur V _{GE} et du courant collecteur à l'établissement	74
Fig Ia	gure 21 – Circuit pour la mesure du temps total de coupure t_{off} du temps de retard à coupure $t_{d(off)}$ et du temps de décroissance t_{f} pour une charge industive	76
Fig co	gure 22 – Formes d'ondes de la tension de grille $V_{ m GE}$ et du courant collecteur $I_{ m C}$ à la upure	76
Fig ter	gure 23 – Circuit pour la mesure de la variation en fonction de la temperature de la nsion collecteur-émetteur V_{CE} à un faible courant de mesure I_{CL} et pour un hauffement du transistor bipolaire à grille isolée par un fort courant I_{CD}	80
Fiç fai	gure 24 – Variation typique de la tension collecteur-émetteur V_{CE} à un courant de mesur ble I_{C1} en fonction de la température du boitier T_c (avec un chauffage extérieur,	те 82
Fic	sur a dife $T_{c}^{(1)}$ $T_{M}^{(1)}$ pour de la résistance thermique et de l'impédance thermique	02
tra	insitoire: méthode 2	84
Fig co	gure 26 – Variation typique de la tension de seuil grille-émetteur $V_{GE(th)}$ à un faible urant de mesure I_{C2} en fonction de la température du boîtier T_c (chauffage externe,	86
U E	$r_{c} = -1$	00 7/700 1
Eic	$u_1 = 28$ Circuit de medure de la tenéron de saturation collecteur émetteur V_{n-1}	00
Fic	gure 20 – Circuit de mesure du courant résiduel collecteur-émetteur	90 02
Fic	quie 29 – Circuit de mésure des temps et de l'énergie de commutation	92 Q4
Fic	31 - Formes d'ordes à la commutation	94 94
Fic	aure 32 – Circuit de mesure de la canacité d'entrée	96
Fic	aure 33 – Circuit de mesure de la capacité de sortie	
Fic	gure 34 – Circuit de mesure de la capacité de transfert inverse	100
Fic	gure 35 – Circuit de blocage à haute température	104
Fic	gure 36 – Circuit de blocage de grille à haute température	106
Fic	gure 37 – Circuit pour l'essai de puissance fictive	108
Fig de	gure 38 – Nombre de cycles attendus en fonction de l'augmentation la température ΔT_{i}	108
Fic	gure A.1 – Circuit de mesure de la tension de claquage collecteur-émetteur	114
Fic	gure B.1 – Circuit de mesure du temps de commutation sur charge inductive	118
Fig	gure B.2 – Formes d'ondes du courant collecteur $I_{\rm C}$ et de la tension collecteur $V_{\rm CE}$ ndant la commutation	118
Fic	gure C.1 – Circuit de mesure de l'aire de sécurité en direct (méthode 1)	122
	J	_

Figure 15 – Circuit for determining the turn-on power dissipation and/or energy	67
Figure 16 – Waveforms of the collector current $I_{\rm C}$, collector-emitter voltage $V_{\rm CE}$ and their product $I_{\rm C} \cdot V_{\rm CE} = P_{\rm on}$ during turn-on. $t_{\rm i}$ is the integration time for calculating the turn-on energy	67
Figure 17 – Circuit for determining the turn-off power dissipation and/or energy at inductive <i>L</i>	69
Figure 18 – Waveforms of collector current $I_{\rm C}$, collector-emitter voltage $V_{\rm CE}$ and their product $I_{\rm C} \cdot V_{\rm CE} = P_{\rm off}$ during turn-off. $t_{\rm i}$ is the integration time for calculating the turn-off energy	71
Figure 19 – Circuit for measuring the turn-on time t_{on} , turn-on delay time $t_{d(on)}$ and rise time t_r .	73
Figure 20 – Waveforms of gate-emitter voltage V_{CE} and collector current deducing turn-on.	75
Figure 21 – Circuit for measuring the turn-off time t_{off} , turn-off delay time $t_{d(off)}$ and fall time t_{f} at load	77
Figure 22 – Waveforms of gate voltage V_{CE} and collector current loduxing turn-off	77
Figure 23 – Circuit for measuring the variation with temperature of the collector-emitter voltage V_{CE} at a low measuring current I_{C1} and for heating up the IGBT by a high current I_{C2}	81
Figure 24 – Typical variation of the collector-emitter voltage V_{CE} at a low measuring current I_{C1} with the case temperature T_c (when heated from outside, i.e. $T_c = T_{vj}$) for three IGBT specimens.	83
Figure 25 – Circuit for measuring thermal resistance and transient thermal impedance: method 2.	85
Figure 26 – Typical variation of the gate-emitter threshold voltage $V_{GE(th)}$ at a low measuring current I_{C2} with the case temperature T_c (when heated from the outside, i.e. $T_c = T_{vi}$).	87
Figure 27 – $I_{\rm C}$, $V_{\rm CE}$ and $T_{\rm C}$ with time	89
Figure 28 – Circuit for measuring the collector emitter saturation voltage V _{CEsat}	91
Figure 29 – Circuit for measuring the collector-emitter cut-off current and	4.793-19
Figure 30 – Circuit diagram for measuring turn-on intervals and energy	95
Figure 31 – Waveforms during turn-on intervals	95
Figure 32 – Circuit for measuring the input capacitance	97
Figure 33 - Circuit for measuring the output capacitance	99
Figure 34 – Circuit for measuring the reverse transfer capacitance	. 101
Figure 35 – Circuit for high-temperature reverse bias	. 105
Figure 36 – Circuit for high-temperature gate bias	. 107
Figure 37 – Circuit for intermittent operating life	. 109
Figure 38 – Expected number of cycles versus temperature rise ΔT_{i}	. 109
Figure A.1 – Circuit for testing the collector-emitter breakdown voltage	. 115
Figure B.1 – Measuring circuit for inductive load turn-off current	. 119
Figure B.2 – Waveforms of collector current $I_{\rm C}$ and collector voltage $V_{\rm CE}$ during turn-off	. 119
Figure C.1 – Test circuit of forward biased safe operating area (method 1)	. 123

Figure C.2 – Caractéristique ΔV_{CE} en fonction de la tension collecteur-émetteur V_{CE}	CE 124
Figure C.3 – Aire de sécurité typique	124
Figure C.4 – Circuit de mesure de l'aire de sécurité en direct (méthode 2)	126
Figure C.5 – Aire de fonctionnement en blocage	128
Figure C.6 – Aire de démarrage en blocage	128

Tableau 1 – Caractéristiques définissant la défaillance pour réception après les essais	
d'endurance	104
Tableau 2 – Essais de type et essais individuels minimaux pour les IGBT si applicables	112

https://standards.iteh.ar

Figure C.2 – Typical ΔV_{CE} versus collector-emitter voltage V_{CE} characteristics	. 125
Figure C.3 – Typical forward biased safe operating area	. 125
Figure C.4 – Circuit testing forward biased safe operating area (method 2)	. 127
Figure C.5 – Latching mode operation locus	. 129
Figure C.6 – Latching mode starting point	. 129

Table 1 – Failure-defining characteristics for acceptance after endurance tests	105
Table 2 – Minimum type and routine tests for IGBTs when applicable	113

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

DISPOSITIFS À SEMICONDUCTEURS – DISPOSITIFS DISCRETS – Partie 9: Transistors bipolaires à grille isolée (IGBT)

AVANT-PROPOS

- 1) La CEI (Commission Electrotechnique Internationale) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI, entre autres activités, puble des Normes internationales. Leur élaboration est confiée à des comités d'études, aux travaux desquets tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore etroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- 2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Cornités nationaux intéressés sont représentés dans chaque comité d'études.
- Les documents produits se présentent sous la forme de recommandations internationales. Ils sont publiés comme normes, spécifications techniques, rapports techniques ou guides et agréés comme tels par les Comités nationaux.
- 4) Dans le but d'encourager l'unification internationale, les Comités nationaux de la CEI s'engagent à appliquer de façon transparente, dans toute la mesure possible, les Normes internationales de la CEI dans leurs normes nationales et régionales. Toute divergence entre la norme de la CEI et la norme nationale ou régionale correspondante doit être indiquée en termes clairs dans cette dernière.
- 5) La CEI n'a fixé aucune procedure oncernant le marquage comme indication d'approbation et sa responsabilité n'est pas engagée quant un matériel est déclare conforme à l'une de ses normes.
- 6) L'attention est attirée sur le fait que certains des éléments de la présente Norme internationale peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour https://sresponsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La Norme internationale CE 60747-9 a été établie par le sous-comité 47E: Dispositifs discrets à semiconducteurs, du contité d'études 47 de la CEI: Dispositifs à semiconducteurs.

La présente version consolidée de la CEI 60747-9 comprend la première édition (1998) [documents 47E/109/FDIS et 47E/115/RVD] et son amendement 1 (2001) [documents 47E/194/FDIS et 47E/198/RVD].

Le contenu technique de cette version consolidée est donc identique à celui de l'édition de base et à son amendement; cette version a été préparée par commodité pour l'utilisateur.

Elle porte le numéro d'édition 1.1.

Une ligne verticale dans la marge indique où la publication de base a été modifiée par l'amendement 1.

La présente norme doit être lue conjointement avec la CEI 60747-1.

Les annexes A, B et C font partie intégrante de la présente norme.

L'annexe D est donnée uniquement à titre d'information.