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Foreword 

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies 
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO 
technical committees. Each member body interested in a subject for which a technical committee has been 
established has the right to be represented on that committee. International organizations, governmental and 
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the 
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of technical committees is to prepare International Standards. Draft International Standards 
adopted by the technical committees are circulated to the member bodies for voting. Publication as an 
International Standard requires approval by at least 75 % of the member bodies casting a vote. 

In exceptional circumstances, when a technical committee has collected data of a different kind from that 
which is normally published as an International Standard (“state of the art”, for example), it may decide by a 
simple majority vote of its participating members to publish a Technical Report. A Technical Report is entirely 
informative in nature and does not have to be reviewed until the data it provides are considered to be no 
longer valid or useful. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO shall not be held responsible for identifying any or all such patent rights. 

ISO/TR 13587:2012 was prepared by Technical Committee ISO/TC 69, Applications of statistical methods, 
Subcommittee SC 6, Measurement methods and results. 

This Technical Report is primarily based on Reference [10].  
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Introduction 

The adoption of ISO/IEC Guide 98-3 (GUM) [1] has led to an increasing recognition of the need to include 
uncertainty statements in measurement results. Laboratory accreditation based on International Standards 
like ISO 17025 [2] has accelerated this process. Recognizing that uncertainty statements are required for 
effective decision-making, metrologists in laboratories of all types, from National Metrology Institutes to 
commercial calibration laboratories, are exerting considerable effort on the development of appropriate 
uncertainty evaluations for different types of measurement using methods given in the GUM. 

Some of the strengths of the procedures outlined and popularized in the GUM are its standardized approach 
to uncertainty evaluation, its accommodation of sources of uncertainty that are evaluated either statistically 
(Type A) or non-statistically (Type B), and its emphasis on reporting all sources of uncertainty considered. The 
main approach to uncertainty propagation in the GUM, based on linear approximation of the measurement 
function, is generally simple to carry out and in many practical situations gives results that are similar to those 
obtained more formally. In short, since its adoption, the GUM has sparked a revolution in uncertainty 
evaluation. 

Of course, there will always be more work needed to improve the evaluation of uncertainty in particular 
applications and to extend it to cover additional areas. Among such other work, the Joint Committee for 
Guides in Metrology (JCGM), responsible for the GUM since the year 2000, has completed Supplement 1 to 
the GUM, namely, “Propagation of distributions using a Monte Carlo method” (referred to as GUMS1) [3]. The 
JCGM is developing other supplements to the GUM on topics such as modelling and models with any number 
of output quantities.  

Because it should apply to the widest possible set of measurement problems, the definition of measurement 
uncertainty in ISO/IEC Guide 99:2007 [4] as a “non-negative parameter characterizing the dispersion of the 
quantity values being attributed to a measurand, based on the information used” cannot reasonably be given 
at more than a relatively conceptual level. As a result, defining and understanding the appropriate roles of 
different statistical quantities in uncertainty evaluation, even for relatively well-understood measurement 
applications, is a topic of particular interest to both statisticians and metrologists. 

Earlier investigations have approached these topics from a metrological point of view, some authors focusing 
on characterizing statistical properties of the procedures given in the GUM. Reference [5] shows that these 
procedures are not strictly consistent with either a Bayesian or frequentist interpretation. Reference [6] 
proposes some minor modifications to the GUM procedures that bring the results into closer agreement with a 
Bayesian interpretation in some situations. Reference [7] discusses the relationship between procedures for 
uncertainty evaluation proposed in GUMS1 and the results of a Bayesian analysis for a particular class of 
models. Reference [8] also discusses different possible probabilistic interpretations of coverage intervals and 
recommends approximating the posterior distributions for this class of Bayesian analyses by probability 
distributions from the Pearson family of distributions. 

Reference [9] compares frequentist (“conventional”) and Bayesian approaches to uncertainty evaluation. 
However, the study is limited to measurement systems for which all sources of uncertainty can be evaluated 
using Type A methods. In contrast, measurement systems with sources of uncertainty evaluated using both 
Type A and Type B methods are treated in this Technical Report and are illustrated using several examples, 
including one of the examples from Annex H of the GUM. 

Statisticians have historically placed strong emphasis on using methods for uncertainty evaluation that have 
probabilistic justification or interpretation. Through their work, often outside metrology, several different 
approaches for statistical inference relevant to uncertainty evaluation have been developed. This Technical 
Report presents some of those approaches to uncertainty evaluation from a statistical point of view and 
relates them to the methods that are currently being used in metrology or are being developed within the 
metrology community. The particular statistical approaches under which different methods for uncertainty 
evaluation will be described are the frequentist, Bayesian, and fiducial approaches, which are discussed 
further after outlining the notational conventions needed to distinguish different types of quantities. 
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Three statistical approaches for the assessment and 
interpretation of measurement uncertainty 

1 Scope 

This Technical Report is concerned with three basic statistical approaches for the evaluation and 
interpretation of measurement uncertainty: the frequentist approach including bootstrap uncertainty intervals, 
the Bayesian approach, and fiducial inference. The common feature of these approaches is a clearly 
delineated probabilistic interpretation or justification for the resulting uncertainty intervals. For each approach, 
the basic method is described and the fundamental underlying assumptions and the probabilistic interpretation 
of the resulting uncertainty are discussed. Each of the approaches is illustrated using two examples, including 
an example from ISO/IEC Guide 98-3 (Uncertainty of measurement — Part 3: Guide to the expression of 
uncertainty in measurement (GUM:1995)). In addition, this document also includes a discussion of the 
relationship between the methods proposed in the GUM Supplement 1 and these three statistical approaches. 

2 Normative references 

The following referenced documents are indispensable for the application of this document. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies. 

ISO 3534-1:2006, Statistics — Vocabulary and symbols — Part 1: General statistical terms and terms used in 
probability 

ISO 3534-2:2006, Statistics — Vocabulary and symbols — Part 2: Applied statistics 

ISO/IEC Guide 98-3:2008, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in 
measurement (GUM:1995) 

ISO/IEC Guide 98-3:2008/Suppl 1:2008, Uncertainty of measurement — Part 3: Guide to the expression of 
uncertainty in measurement (GUM:1995) — Supplement 1: Propagation of distributions using a Monte Carlo 
method 

3 Terms and definitions 

For the purposes of this document, the terms and definitions in ISO 3534-1, ISO 3534-2 and the following 
apply. 

3.1 
empirical distribution function 
empirical cumulative distribution function 
distribution function that assigns probability 1 n  to each of the  items in a random sample, i.e., the empirical 

distribution function is a step function defined by 

n

 
( )

i

n

x x
F x

n


 , 

where  1,..., nx x is the sample and A is the number of elements in the set A . 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/TR 13587:2012
https://standards.iteh.ai/catalog/standards/sist/0b87cc33-4ec5-4e69-a86b-

fded18df6af0/iso-tr-13587-2012



ISO/TR 13587:2012(E) 

2  © ISO 2012 – All rights reserved
 

3.2 
Bayesian sensitivity analysis 
study of the effect of the choices of prior distributions for the parameters of the statistical model on the 
posterior distribution of the measurand 

3.3 
sufficient statistic 
function of a random sample 1,..., nX X  from a probability density function with parameter   for which the 

conditional distribution of  1,..., nX X  given this function does not depend on   

NOTE A sufficient statistic contains as much information about   as 1,..., nX X . 

3.4 
observation model 
mathematical relation between a set of measurements (indications), the measurand, and the associated 
random measurement errors 

3.5 
structural equation 
statistical model relating the observable random variable to the unknown parameters and an unobservable 
random variable whose distribution is known and free of unknown parameters 

3.6 
non-central chi-squared distribution 
probability distribution that generalizes the typical (or central) chi-squared distribution 

NOTE 1 For  independent, normally distributed random variables k iX  with mean i  and variance 2
i , the random 

variable 2

1

k

X X

 ( )i i
i

 is non-central chi-squared distributed. The non-central chi-squared distribution has two 

parameters: , the degrees of freedom (i.e., the number of k iX ), and  , which is related to the means of the random 

variables iX  by 2

1

(
k

i i
i

)  


   and called the non-centrality parameter. 

NOTE 2 The corresponding probability density function is expressed as a mixture of central 2  probability density 

functions as given by 

2

2

0

( )
1

2 2

202

( 2)
( ) ( )

!

2 !2
2

k i

i

X Y
i

k
i i

k
ii

e
g g

i

e

k
i i



 

 

 







 
 








   
 




, 

where is distributed as chi-squared with degrees of freedom. qY q

4 Symbols (and abbreviated terms) 

In 4.1.1 of the GUM, it is stated that Latin letters are used to represent both physical quantities to be 
determined by measurement (i.e., measurands in GUM terminology) as well as random variables that may 
take different observed values of a physical quantity. This use of the same symbols, whose different meanings 
are only indicated by context, can be difficult to interpret and sometimes leads to unnecessary ambiguities or 
misunderstandings. To mitigate this potential source of confusion, the more traditional notation often used in 
the statistical literature is employed in this Technical Report. In this notation, Greek letters are used to 
represent parameters in a statistical model (e.g., measurands), which can be either random variables or 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/TR 13587:2012
https://standards.iteh.ai/catalog/standards/sist/0b87cc33-4ec5-4e69-a86b-

fded18df6af0/iso-tr-13587-2012



ISO/TR 13587:2012(E) 

© ISO 2012 – All rights reserved 3
 

constants depending on the statistical approach being used and nature of the model. Upper-case Latin letters 
are used to represent random variables that can take different values of an observable quantity (e.g., potential 
measured values), and lower-case Latin letters to represent specific observed values of a quantity (e.g., 
specific measured values). Since additional notation may be required to denote other physical, mathematical, 
or statistical concepts, there will still always be some possibility for ambiguity1). In those cases the context 
clarifies the appropriate interpretation. 

5 The problem addressed 

5.1 The concern in this Technical Report is with a measurement model in which 1,..., p   are input 

quantities and   is the output quantity: 

 1 ..., ,pf     (1) 

where f  is known as the measurement function. The function f  is specified mathematically or as a 

calculation procedure. In the GUM (4.1, NOTE 1), the same functional relationship is given as 

 1 ..., pY f X X   (2) 

which cannot be easily distinguished from the measurement function evaluated at the values of the 
corresponding random variables for each observed input. 

Using the procedure recommended in the GUM, the  unknown quantities p 1 p…    are estimated by 

values 1 ..., px x  obtained from physical measurement or from other sources. Their associated standard 

uncertainties are also obtained from the relevant data by statistical methods or from probability density 
functions based on expert knowledge that characterize the variables. The GUM (also see 4.5 in 
Reference [11]) recommends that the same measurement model that relates the measurand   to the input 
quantities 1 p…    be used to calculate y from 1 ..., px x . Thus, the measured value (or, in statistical 

nomenclature, the estimate)  of y   is obtained as 

1( ..., )py f x x  ,  (3) 

that is, the evaluated Y , , is taken to be the measured value of 1( ,... )py f x x  . The estimates y , 1 ..., px x  

are realizations of 1 ., .., pY X X , respectively. 

5.2 In this Technical Report, three statistical approaches are each used to provide (a) a best estimate  of y

 , (b) the associated standard uncertainty , and (c) a confidence interval or coverage interval for ( )u y   for a 

prescribed coverage probability (often taken as 95 %). 

5.3 When discussing standard uncertainties, distinction is made between evaluated standard uncertainties 
associated with estimates of various quantities and their corresponding theoretical values. Accordingly, 
notation such as   or X  will denote theoretical standard uncertainties and notation such as XS  and xs  will 

denote an evaluated standard uncertainty before and after being observed, respectively. 

                                                      
1) For example, not all quantities represented by Greek letters in a statistical model must be parameters of the model. 
One common example of this type of quantity is the set of unobservable quantities that represent the random 
measurement errors found in most statistical models (i.e., the i  in the model i iY    ). 
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6 Statistical approaches 

6.1 Frequentist approach 

6.1.1 The first statistical approach to be considered, in which uncertainty can be evaluated probabilistically, 
is frequentist. The frequentist approach is sometimes referred to as “classical” or “conventional”. However, 
due to the nature of uncertainty in metrology, these familiar methods must often be adapted to obtain 
frequentist uncertainty intervals under realistic conditions. 

6.1.2 In the frequentist approach, the input quantities 1 p…    in the measurement model (1) and the output 

quantity   are regarded as unknown constants. Then, data related to each input parameter, i , is obtained 

and used to estimate the value of   based on the measurement model or the corresponding statistical 
models. Finally, confidence intervals for , for a specified level of confidence, are obtained using one of 
several mathematical principles or procedures, for example, least-squares, maximum likelihood, or the 
bootstrap. 

6.1.3 Because   is treated as a constant, a probabilistic statement associated with a confidence interval 
for   is not a direct probability statement about its value. Instead, it is a probability statement about how 
frequently the procedure used to obtain the uncertainty interval for the measurand would encompass the value 
of   with repeated use. “Repeated use” means that the uncertainty evaluation is replicated many times using 
different data drawn from the same distributions. Traditional frequentist uncertainty intervals provide a 
probability statement about the long-run properties of the procedure used to construct the interval under the 
particular set of conditions assumed to apply to the measurement process. 

6.1.4 In most practical metrological settings, on the other hand, uncertainty intervals are to account for the 
uncertainty associated with estimates of quantities obtained using measured values (observed data) and also 
the uncertainty associated with estimates of quantities based on expert knowledge. To obtain an uncertainty 
interval analogous to a confidence interval, the quantities that are not based on measured values are treated 
as random variables with probability distributions for their values while those quantities whose values can be 
estimated using statistical data are treated as unknown constants. 

6.1.5 Traditional frequentist procedures for the construction of confidence intervals are then to be modified 
to attain the specified confidence level after averaging over the potential values of the quantities assessed 
using expert judgment [5]. Such modified coverage intervals provide long-run probability statements about the 
procedure used to obtain the interval given probability distributions for the quantities that have not been 
measured, just as traditional confidence intervals do when all parameters are treated as constants. 

6.1.6 Table 1 summarizes interpretations of the frequentist, Bayesian and fiducial approaches to uncertainty 
evaluation. 
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Table 1 — Interpretations of the approaches to uncertainty evaluation 

Approach Characterization of quantities 
in measurement model 

 1 ..., pf     

Uncertainty interval for 
output quantity   

Note 

Frequentist    and the i  all unknown 

constants 

Long-run occurrence 
frequency that interval 
contains   

Classical frequentist approach 
extended to integrate over 
uncertainties that are not 
statistically evaluated 

Bayesian    and the i are random 

variables. Their probability 
distributions represent beliefs 
about the values of the input 
and output quantities 

Coverage interval 
containing   based on a 
posterior distribution 
for   

Possible non-uniqueness of 
interval due to the choice of  
priors 

Fiducial  
i  regarded as random 

variables whose distributions 
are obtained from assumptions 
on observed data used to 
estimate i  and expert 

knowledge about i   

Coverage interval 
containing   based on a 
fiducial distribution for   

Non-uniqueness due to the 
choice of the structural equation 

 

6.2 Bayesian approach 

The second approach is called the Bayesian approach. It is named after the fundamental theorem on which it 
is based, which was proved by the Reverend Thomas Bayes in the mid-1700s [12]. In this approach, 
knowledge about the quantities in measurement model (1) in Clause 5 is modelled as a set of random 
variables that follow a joint probability distribution for 1 p…    and  . Bayes’ theorem then allows these 

probability distributions to be updated based on the observed data (also modelled using probability 
distributions) and the interrelationships of the parameters defined by the function f or equivalent statistical 

models. Then, a probability distribution is obtained that describes knowledge of   given the observed data. 
Uncertainty intervals that contain   with any specified probability can then be obtained from this distribution. 
Because knowledge of the parameter values is described by probability distributions, Bayesian methods 
provide direct probabilistic statements about the value of   and the other parameters, using a definition of 
probability as a measure of belief. 

6.3 Fiducial approach 

6.3.1 The fiducial approach was developed by R.A. Fisher [13] in the 1930s. In this approach, a probability 
distribution, called the fiducial distribution, for   conditional on the data is obtained based on the 
interrelationship of   and the i  described by f  and the distributional assumptions about the data used to 

estimate the i . Once obtained, the fiducial distribution for   can be used to obtain uncertainty intervals that 

contain   with any specified probability.  

6.3.2 The argument that justifies the process used to obtain the fiducial distribution is illustrated using a 
simple example. Suppose the values taken by a quantity Y  can be described by the equation Y Z  , 

where   is the measurand and Z  is a quantity characterized by a standard normal random variable. If  is a 

realized value of Y  corresponding to a realized value z  of 

y

Z , then y z   . Despite Z  not being 

observable, knowledge of the distribution from which  was generated enables a set of plausible values of z   

to be determined. The probability distribution for Z  can be used to infer the probability distribution for  . The 
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process of transferring the relationship y z    to the relation y Z    is what constitutes the fiducial 

argument. The fiducial distribution for   is the probability distribution for the random variable y Z  with  

fixed. 

y

6.4 Discussion 

When describing the different methods for uncertainty evaluation under each of these statistical approaches, 
their fundamental underlying assumptions, incorporation of uncertainties obtained using Type A or Type B 
evaluation, and the probabilistic interpretation of the resulting uncertainty evaluations will be discussed. A 
description of how the methods used in the GUM relate to the frequentist, Bayesian, or fiducial results will also 
be given.  

7 Examples 

7.1 General 

Two examples are given to illustrate the approaches. Example 1 is concerned with a physical quantity that is 
to be corrected for background interference. Table 2 gives the notation used and Subclauses 7.2 to 7.4 define 
variants of this evaluation problem. Example 2 is the calibration of the length of a gauge block taken from 
Annex H.1 of the GUM. Because it is more complicated, it is considered in Clause 11, after the three methods 
for uncertainty evaluation are discussed and illustrated using Example 1. 

In later clauses, the three approaches will be applied to these examples. 

NOTE The units of the quantities involved are not given when they are immaterial for the example. 

Table 2 — Notation for Example 1 

Quantity Symbol 

Physical quantity of interest (the measurand)   

Quantity detected by measurement method when measuring background 
(i.e., expected value of ) (Background interference) B

  

Quantity detected by measurement method  when measuring the physical 
quantity of interest   (i.e., expected value of Y ) 

     

Standard deviation of measurement method when measuring the physical 
quantity of interest   (i.e., standard deviation of Y ) 

Y  

Standard deviation of measurement method when measuring background      
(i.e., standard deviation of ) B

B  

 

7.2 Example 1a 

Five measured values, obtained independently, of signal plus background are observed. Each measured 
value is assumed to be a realization of a random variable, , having a Gaussian distribution with mean Y
     and standard deviation Y . The measured values, , of the signal plus background are y

3,738,   3,442,   2,994,   3,637,   3,874. 

This data has a sample mean of 3,537y   and a sample standard deviation of 0,342ys  . 
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Similarly, five measured values, obtained independently, of the background are obtained. These measured 
values are assumed to be realizations of a random variable, , having a Gaussian distribution with mean B   

and standard deviation B . The observed values, , of the background are b

1,410,   1,085,   1,306,   1,137,   1,200. 

Because there are measured values for each quantity that is a source of uncertainty, Example 1a has a 
straightforward statistical interpretation for each approach. 

7.3 Example 1b 

Example 1b is identical to Example 1a with the exception that the assessment of the background is based on 
expert knowledge or past experience, rather than on fresh experimental data. In this case, the background   

is believed to follow a uniform (or rectangular) distribution with endpoints 1,126 and 1,329. Because expert 
judgment is applied, the uncertainty associated with a value of the background will be obtained using a Type B 
evaluation. Thus, Example 1b can be considered closer than Example 1a to a real measurement situation. 

7.4 Example 1c 

Example 1c is identical to Example 1b except that the signal   is closer to the background. The data 
observed for the signal plus background in this case are 

1,340,   1,078,   1,114,   1,256,   1,192. 

With the signal just above the background, Example 1c illustrates how physical constraints can be 
incorporated in the evaluation of uncertainty for each approach. 

8 Frequentist approach to uncertainty evaluation 

8.1 Basic method 

8.1.1 In the frequentist context, parameters are unknown constants. Following the convention to denote 
random variables by upper case letters and observed values of random variables by lower case letters, a 
confidence interval can be obtained from a pivotal quantity for  , i.e., a function ( , )W Y   of the (possibly 

multivariate) data Y  and the parameter  , whose probability distribution is parameter-free (provided such a 
distribution can be determined.) Then, a 100(1 ) % confidence interval for   can be determined by 

calculating lower and upper percentiles   and u  to satisfy ( ( )Y u ) 1P W        . 

8.1.2 For example, let  be random variables, distributed as 1( ,..., )nY Y Y 2(N )  , with the further random 

variable 
1

n

i
i

Y Y


  n . If the parameter of interest is  , then for known , 
Y

Z
n








~  (0,1).N

is a pivotal quantity. The frequentist confidence interval for   is 

2 ,Y z
n




  (4) 

where zβ is the 100   percentile of the standardized normal distribution. 
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If   is not known, it can be estimated by the sample standard deviation 

 2
1

1

n

j
j

Y Y

S
n









 

Then, the (exact) pivotal quantity for   is obtained by replacing   in interval (4) by : S

Y

S n




~  (5) ( 1)t n  .

Thus, a 100(1  ) % confidence interval for   based on the Student’s t-distribution is 

1 1 2n

S
Y t

n
      

where 1nt    is the 100  percentile of the t-distribution with 1n   degrees of freedom. 

8.1.3 Instead of exact pivotal quantities, which exist only in simple situations, approximate pivotal quantities 
are commonly employed in applications. For large samples, the central limit theorem can be invoked to obtain 
approximate confidence intervals based on the normal distribution. 

8.1.4 Further methods of obtaining confidence intervals (inverting a test statistic, pivoting a continuous 
cumulative distribution function, ordering the discrete sample values according to their probabilities, etc.) are 
discussed in Reference [14]. Some of them are mentioned in Example 1. A computer-intensive method, called 
the bootstrap, also can be used to construct a confidence interval for pivotal quantities that have unknown 
distributions. The bootstrap procedure is discussed in 8.2. 

8.1.5 Although not explicitly given a frequentist justification from fundamental scientific considerations, the 
procedures recommended in the GUM can be used to obtain an approximate confidence interval for the 
measurand. Such confidence intervals are based on an approximate pivotal quantity with an 
assumed t-distribution obtainable from the measurement model (1). Under this procedure, the unknown 
quantities 1 p…    are estimated by values 1 px x   obtained from physical measurement or from other 

sources. Some of the values ix  might be sample means or other functions of data designed to estimate the 

quantities 1,...,i i m   . Their associated standard uncertainties  are also evaluated from the data by 

statistical methods, typically using the sample standard deviation or using robust rank-based procedures. 
Such methods are known as Type A evaluations of uncertainty. The degrees of freedom 

( )iu x

i  associated with 

 is determined from the sample size used to estimate( )iu x i . 

8.1.6 Since physical measurements might not always be possible or feasible for some of the i , estimates 

ix  of i  for some , say , are obtained by subjective (or potentially subjective) evaluations, and 

used together with 

i 1,...,i m p 

ix , for , obtained from Type A evaluations of uncertainty. Thus, non-statistical 

types of information are used to estimate 

1,...,i p

1m … p     using Type B evaluations of uncertainty, including 

scientific judgment, manufacturer’s specifications, or other indirectly related or incompletely specified 
information. 

NOTE Sometimes uncertainties are obtained by both Type A and Type B evaluations of uncertainty. 

8.1.7 The GUM recommends that the same measurement model relating the measurand   to the input 
quantities 1 p…    be used to calculate y  from 1 ..., px x . Thus, the measured value (or the estimate)  of y   

is obtained as  

1 1( ..., , ,..., ),m m py f x x x x   
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that is, the evaluated , Y 1( ,... )py f x x , is taken to be the measured value of  . 

8.1.8 In the GUM, the law of propagation of uncertainty is used to evaluate the standard uncertainty, . 

associated with . The standard uncertainties 

( )u y

y 1( ) ..., ( )pu x u x  associated with the values 1( ,..., )px xx  are 

used in the Taylor series expansion of the function 1( ,... )pf x x  at 1 p…   , whose terms up to first order are 

1 1
1

( ,..., ) ( ,..., ) ( )
p

p p i i
i

f x x f c x i  


     (6) 

Denoting 1( ,..., )p  by , the partial derivatives μ

i
i

f
c







μ=x

 

are called sensitivity coefficients. Applying the law of propagation of uncertainty in the GUM gives the 
approximate standard uncertainty associated with : y

2 2

1

( ) ( ) 2 ( )
p

i i i j i j
i i j

u y c u x c c u x x
 

    

)

  (7) 

where  is the covariance between ( i ju x x iX  and jX . 

8.1.9 To evaluate the standard uncertainty , the GUM uses the effective degrees of freedom ( )u y eff  

computed from the Welch-Satterthwaite formula, 

4 4

4

eff
( )

( )
1

( )

i i

i

p
c u x

x
i

u y







 


 (8) 

NOTE Reference [15] discusses a counter-intuitive property according to which in interlaboratory studies a 
confidence interval based on the Welch-Satterthwaite approximation may be shorter for a between-laboratory difference 
than for one of its components. 

8.1.10 Finally, in order to construct a confidence interval for , the approximate pivotal quantity, 

( )
( )

y
W y

u y

 
   (9) 

is employed. According to the GUM, 

( )W Y  ~ eff( )t ,  (10) 

that is, (W Y )  is an approximately pivotal quantity having a t-distribution with eff  degrees of freedom. 

The 100(1 ) % confidence interval 

eff ,1 2( )y u y t  , (11) 

for   can then be recommended as the 100(1 –  ) % uncertainty interval for  . The half-width  of 

this interval is known as the expanded uncertainty associated with . 
eff ,1 2 ( )t u   y

y
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