INTERNATIONAL STANDARD

ISO 10863

First edition 2011-09-01

Non-destructive testing of welds — Ultrasonic testing — Use of time-of-flight diffraction technique (TOFD)

Contrôle non destructif des assemblages soudés — Contrôle par ultrasons — Utilisation de la technique de diffraction des temps de vol (méthode TOFD)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10863:2011 https://standards.iteh.ai/catalog/standards/sist/9ff5834a-8af9-4530-96cf-23e2bf41aa53/iso-10863-2011

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10863:2011 https://standards.iteh.ai/catalog/standards/sist/9ff5834a-8af9-4530-96cf-23e2bf41aa53/iso-10863-2011

COPYRIGHT PROTECTED DOCUMENT

© ISO 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents

Page

Forew	ord	iv
1	Scope	1
2	Normative references	1
3	Terms and definitions	2
4	General remarks on the capabilities of the technique	2
5	Testing levels	3
6	Information required prior to testing	3
6.1	Items to be defined by specification	
6.2 6.3	Specific information required by the operator before testing	
	•	
7 7.1	Requirements for personnel and equipment Personnel qualifications	4 4
7.2	Equipment	
8	Preparation for testing	5
8.1	Preparation for testing. Volume to be inspected TANDARD PREVIEW	5
8.2	Setup of probes Scan increment setting (Standards Iteh al)	6
8.3 8.4	Geometry considerations	
8.5	Preparation of scanning surfaces 150-10862-2011	6
8.6	Temperature https://standards.itch.ai/catalog/standards/sist/9ff5834a-8af9-4530-96cf	7
8.7 8.8	Couplant29ะ2bβ4าลส59/iso-10863-2011 Provision of datum points	7
	·	
9	Testing of base material	
10 10.1	Range and sensitivity settings	
10.1	SettingsChecking of the settings	
10.3	Reference blocks	
11	Weld testing	.10
12	Interpretation and analysis of TOFD images	.10
12.1	General	.10
12.2 12.3	Assessing the quality of the TOFD image	
12.3	Classification of relevant TOFD indications	
12.5	Determination of location and size	
12.6	Evaluation against acceptance criteria	.13
13	Test report	.13
Annex	A (informative) Reference blocks	.15
Annex	B (informative) Examples of TOFD scans	.20
Bibliog	graphy	.30

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 10863 was prepared by the European Committee for Standardization (CEN) Technical Committee CEN/TC 121, *Welding*, in collaboration with Technical Committee ISO/TC 44, *Welding and allied processes*, Subcommittee SC 5, *Testing and inspection of welds*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

Requests for official interpretations of any aspect of this International Standard should be directed to the Secretariat of ISO/TC 44/SC 5 via your national standards body. A complete listing of these bodies can be found at www.iso.org.

https://standards.iteh.ai/catalog/standards/sist/9ff5834a-8af9-4530-96cf-23e2bf41aa53/iso-10863-2011

Non-destructive testing of welds — Ultrasonic testing — Use of time-of-flight diffraction technique (TOFD)

1 Scope

This International Standard specifies the application of the time-of-flight diffraction (TOFD) technique to the semi- or fully automated ultrasonic testing of fusion-welded joints in metallic materials of minimum thickness 6 mm. It applies to full penetration welded joints of simple geometry in plates, pipes, and vessels, where both the weld and parent material are low-alloyed carbon steel. Where specified and appropriate, TOFD can also be used on other types of materials that exhibit low ultrasonic attenuation (especially that due to scatter).

Where material-dependent ultrasonic parameters are specified in this International Standard, they are based on steels having a sound velocity of $(5\,920\pm50)\,\text{m/s}$ for longitudinal waves, and $(3\,255\pm30)\,\text{m/s}$ for transverse waves. It is necessary to take this fact into account when examining materials with a different velocity.

This International Standard makes reference to the basic standard EN 583-6 and provides guidance on the specific capabilities and limitations of TOFD for the detection, location, sizing and characterization of discontinuities in fusion-welded joints. TOFD can be used as a stand-alone method or in combination with other non-destructive testing (NDT) methods or techniques, for manufacturing inspection, and for in-service inspection.

ISO 10863:2011

This International Standard specifies four testing levels (A, B, C, D) in accordance with ISO 17635 and corresponding to an increasing level of inspection reliability. Guidance on the selection of testing levels is provided.

This International Standard permits assessment of TOFD indications for acceptance purposes. This assessment is based on the evaluation of transmitted, reflected and diffracted ultrasonic signals within a generated TOFD image.

This International Standard does not include acceptance levels for discontinuities.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 9712, Non-destructive testing — Qualification and certification of NDT personnel — General principles

ISO 17635, Non-destructive testing of welds — General rules for metallic materials

ISO 17640:2010, Non-destructive testing of welds — Ultrasonic testing — Techniques, testing levels, and assessment

EN 473, Non-destructive testing — Qualification and certification of NDT personnel — General principles

EN 583-6, Non-destructive testing — Ultrasonic examination — Part 6: Time-of-flight diffraction technique as a method for detection and sizing of discontinuities

© ISO 2011 – All rights reserved

EN 1330-4, Non-destructive testing — Terminology — Part 4: Terms used in ultrasonic testing

EN 12668 (all parts), Non-destructive testing — Characterization and verification of ultrasonic examination equipment

3 Terms and definitions

For the purposes of this document, the terms and definitions given in EN 1330-4 and the following apply.

3.1

time-of-flight diffraction setup

TOFD setup

probe arrangement defined by probe characteristics (e.g. frequency, probe element size, beam angle, wave mode) and probe centre separation

3.2

probe centre separation

PCS

distance between the index points of the two probes

The PCS for two probes located on a curved surface is the straight-line, geometric separation between the two probe index points and not the distance measured along the surface.

iTeh STANDARD PREVIEW beam intersection point

point of intersection of the two main beam axes (standards.iteh.ai)

3.4

time-of-flight diffraction indication

ISO 10863:2011

TOFD indication

atalog/standards/sist/9ff5834a-8af9-4530-96 pattern or disturbance in the time-of-flight diffraction image which may need further evaluation

3.5

time-of-flight diffraction image

TOFD image

two-dimensional image, constructed by collecting adjacent A-scans while moving the time-of-flight diffraction setup

NOTE The signal amplitude of the A-scans is typically represented by grey-scale values.

3.6

offset scan

scan parallel to the weld axis, where the beam intersection point is not on the centreline of the weld

General remarks on the capabilities of the technique

General principles of the TOFD technique are described in EN 583-6. For the testing of fusion-welded joints, some specific capabilities and limitations of the technique have to be considered.

The TOFD technique is an ultrasonic image-generating technique, which offers the capability of detection, location, and sizing. To a certain extent, characterization of discontinuities in the weld material as well as in the adjacent parent material is also possible.

Compared with purely reflection-based techniques, the TOFD technique, which is based upon diffraction as well as reflection, is less sensitive to the orientation of the discontinuity. Discontinuities oriented perpendicular to the surface, and at intermediate angles of tilt, are detectable as well as discontinuities in the weld fusion faces.

In certain circumstances (thickness, weld preparation, scope of testing, etc.) more than one single TOFD setup is required.

A typical TOFD image is linear in time (vertical axis) and probe movement (horizontal axis). Because of the V-configuration of the ultrasound paths, the location of a possible discontinuity is then non-linear. TOFD testing has to be carried out in a correct and consistent way, such that valid images are generated which can be evaluated correctly, e.g. coupling losses and data acquisition errors have to be avoided, see 12.2.

The interpretation of TOFD images requires skilled and experienced operators. Some typical TOFD images of discontinuities in fusion-welded joints are provided in Annex B.

There is a reduced capability for the detection of discontinuities close to or connected with the scanning surface or with the opposite surface. This has to be considered especially for crack-sensitive steels or at inservice inspections. In cases where full coverage of these zones is required, additional measures shall be taken, e.g. TOFD can be accompanied by other NDT methods or techniques.

Diffracted signals from weld discontinuities can have small amplitude responses. The grain scatter effect from coarse-grained material can hinder the detection and evaluation of such responses. This shall be taken into account whenever inspecting such material.

5 Testing levels

This International Standard specifies four testing levels (A, B, C and D, see Table 1). From testing level A to testing level C an increasing reliability is achieved.

PREVIEW

(sta Table 1 - Testing levels

Testing level	TOFD setup	Reference block for setup veriffication 3:20 rds. iteh a (See 18,2) tandards/		Offset scan	Written test procedure			
А	As in Table 2	23e2bf41aa53/iso-10 No	0863-2011 No	No	This International Standard			
В	As in Table 2	No	Yes	No	This International Standard			
С	As in Table 2	Yes	Yes	а	Yes			
D	As defined by specification	Yes	Yes	а	Yes			
^a The necessity, number and position of offset scans have to be determined.								

If the specified acceptance level requires detection of a certain size of discontinuity at both or one surface of the weld (see Clause 4), this can necessitate the use of techniques or methods outside the scope of this International Standard.

For manufacturing inspections (see also ISO 17635), all testing levels are applicable. Level A is only applicable for wall thicknesses up to 50 mm. For in-service inspections, only testing level D shall be applied.

6 Information required prior to testing

6.1 Items to be defined by specification

Information on the following items is required:

a) purpose and extent of TOFD testing (see Clauses 5 and 8);

ISO 10863:2011(E)

- b) testing levels (see Clause 5), e.g.
 - 1) whether a written test procedure is required,
 - 2) whether reference blocks are required;
- c) specification of reference blocks, if required (see 10.3);
- d) manufacturing or operation stage at which the testing is to be carried out;
- e) requirements for: temperature, access and surface conditions (see Clause 8);
- f) reporting requirements (see Clause 13);
- g) acceptance criteria;
- h) personnel qualifications (see 7.1).

6.2 Specific information required by the operator before testing

Before any testing of a welded joint can begin, the operator shall have access to all the information as specified in 6.1 together with the following additional information:

- a) written test instruction or procedure (see 6.3), if required;
- b) type(s) of parent material and product form (i.e. cast, forged, rolled);
- c) joint preparation and dimensions; (standards.iteh.ai)
- d) welding procedure or relevant information on the welding process;
- e) time of inspection relative to any post-weld heat treament/sist/9ff5834a-8af9-4530-96cf-23e2bf41aa53/iso-10863-2011
- f) result of any parent metal testing carried out prior to and/or after welding;
- g) defect type and morphology to be detected.

6.3 Written test instruction or procedure

For testing levels A and B, this International Standard satisfies the need for a written test procedure.

For testing levels C and D, or where the techniques described in this International Standard are not applicable to the welded joint to be tested, a specific written test procedure shall be used.

When data collection is performed by personnel certified to level 1, a written test instruction shall be prepared. The written test instruction shall contain as a minimum the information listed in Clause 13.

7 Requirements for personnel and equipment

7.1 Personnel qualifications

In addition to a general knowledge of ultrasonic weld inspection, all personnel shall be competent in TOFD inspections. Documented evidence of their competence (level of training and experience) is required.

Preparation of written test instructions, final off-line analysis of data, and acceptance of the report shall be performed by personnel certified as a minimum to level 2 in accordance with ISO 9712 or EN 473 or equivalent in ultrasonic testing in the relevant industrial sector. In accordance with a written instruction and under the supervision of level 2 or level 3 personnel, equipment setup, data acquisition, data storage, and

report preparation can be performed by personnel certified to a minimum of level 1 in accordance with ISO 9712 or EN 473 or equivalent in ultrasonic testing in the relevant industrial sector.

For data acquisition, the level 1 personnel may be supported by an assistant technician.

In cases where the above minimum qualifications are not considered adequate, job-specific training shall be carried out.

7.2 Equipment

7.2.1 Ultrasonic equipment and display. Ultrasonic equipment used for the TOFD technique shall, where applicable, comply with the requirements of EN 12668.

The TOFD software shall not mask any problems such as loss of coupling, missing scan lines, synchronization errors or electronic noise.

In addition, the requirements of EN 583-6 shall apply, taking into account the following:

- a) the equipment shall be able to select an appropriate portion of the time base within which A-scans are digitized;
- b) it is recommended that a sampling rate of the A-scan of at least 6 times the nominal probe frequency be used.
- **7.2.2** Ultrasonic probes used for the TOFD technique on welds shall comply with EN 583-6.

Adaptation of probes to curved scanning surfaces shall comply with ISO 17640.

A recommendation for the selection of probes is given in Table 2.

ISO 10863:2011

7.2.3 Scanning mechanisms of the requirements of EN 583-6-shall apply To achieve consistency of the images (collected data), guiding mechanisms may be used 2011

8 Preparation for testing

8.1 Volume to be inspected

Testing shall be performed in accordance with EN 583-6. The purpose of the testing shall be defined by specification. Based on this, the volume to be inspected shall be determined.

The volume to be inspected is located between the probes. For testing levels A and B, the probes shall be placed symmetrically about the weld centreline. For testing levels C and D, additional offset scans may be required.

For manufacturing inspection, the examination volume is defined as the zone which includes weld and parent material for at least 10 mm on each side of the weld or the width of the heat-affected zone, whichever is greater. In all cases the whole examination volume shall be covered.

Normally these examinations are carried out in accordance with recognized standards applying acceptance levels for quality assurance. If fitness-for-purpose methods are applied, then corresponding acceptance criteria shall be specified.

For in-service inspections, the examination volume may be targeted to specific areas of interest, e.g. the inner one-third of the weld body. The acceptance criteria and minimum size discontinuity to be detected in the area of interest shall be specified.

8.2 Setup of probes

The probes shall be set up to ensure adequate coverage and optimum conditions for the initiation and detection of diffracted signals in the area of interest. For butt welds of simple geometry and with narrow weld crowns at the opposite surface, the testing shall be performed in one or more setups (scans) dependent upon the wall thickness (see Table 2). For other configurations, e.g. X-shaped welds, different base metal thickness at either side of the weld, or tapering, Table 2 may be used as guidance. In this case, the effectiveness and coverage of the setup shall be verified by the use of reference blocks. Selection of probes for full coverage of the complete weld thickness should follow Table 2. Care should be taken to choose appropriate combinations of parameters. For example, in the thickness range 15 mm to 35 mm a frequency of 10 MHz, a beam angle of 70° and an element size of 3 mm may be appropriate for a thickness of 16 mm but not for 32 mm.

For testing levels A and B, it is recommended that the TOFD setup be verified by the use of reference blocks.

For testing levels C and D, all the setups chosen for the test object shall be verified by use of reference blocks.

If setup parameters are not in accordance with Table 2, the capability shall be verified by the use of reference blocks.

For in-service inspection the intersection point of the beam centrelines should be optimized for the specified examination volume.

8.3 Scan increment setting

The scan increment setting shall be dependent upon the wall thickness to be examined. For thicknesses up to 10 mm, the scan increment shall be no more than 0,5 mm. For thicknesses between 10 mm and 150 mm, the scan increment shall be no more than 1 mm. Above 150 mm the scan increment shall be no more than 2 mm.

8.4 Geometry considerations

ISO 10863:2011

Care should be taken when examining welds of complex geometry, e.g. welds joining materials of unequal thickness, materials that are joined at an angle, or nozzles. As TOFD is based upon the measurement of time intervals of sound waves taking the shortest path between the point of emission and the point of reception via points of reflection or diffraction, some areas of interest can be obscured. Additional scans may in many cases overcome this problem. Planning examinations of complex geometries requires in-depth knowledge of sound propagation, representative reference blocks and sophisticated software and is beyond the scope of this International Standard.

8.5 Preparation of scanning surfaces

Scanning surfaces shall be wide enough to permit the examination volume to be fully covered.

Scanning surfaces shall be even and free from foreign matter likely to interfere with probe coupling (e.g. rust, loose scale, weld spatter, notches, grooves). Waviness of the test surface shall not result in a gap between one of the probes and test surface greater than 0,5 mm. These requirements shall be ensured by dressing, if necessary.

Scanning surfaces may be assumed to be satisfactory if the surface roughness, Ra, is not greater than 6,3 µm for machined surfaces, or not greater than 12,5 µm for shotblasted surfaces.

Table 2 — Recommended TOFD setups for simple butt welds dependent on wall thickness

Thickness	Number of TOFD setups	Depth range	Centre frequency	Beam angle (longitudinal waves)	Element size	Beam intersection
t mm		Δt mm	f MHz	lpha	mm	
6 to 10	1	0 to <i>t</i>	15	70	2 to 3	2/3 of <i>t</i>
0 10 10	ı	0 10 1	15	70	2 10 3	2/3 01 1
>10 to 15	1	0 to <i>t</i>	15 to 10	70	2 to 3	2/3 of t
>15 to 35	1	0 to <i>t</i>	10 to 5	70 to 60	2 to 6	2/3 of t
>35 to 50	1	0 to <i>t</i>	5 to 3	70 to 60	3 to 6	2/3 of t
>50 to 100	0	0 to t/2	5 to 3	70 to 60	3 to 6	1/3 of t
>50 10 100	2	t/2 to t	5 to 3	60 to 45	6 to 12	5/6 of t
	3	0 to t/3	5 to 3	70 to 60	3 to 6	2/9 of t
>100 to 200		t/3 to 2t/3	5 to 3	60 to 45	6 to 12	5/9 of t
		2/3 <i>t</i> to <i>t</i>	5 to 2	60 to 45	6 to 20	8/9 of t
	4	0 to t/4	5 to 3	70 to 60	3 to 6	1/12 of t
		t/4 to t/2	5 to 3	60 to 45	6 to 12	5/12 of t
>200 to 300		t/2 to 3t/4	5 to 2	60 to 45	7 6 to 20	8/12 of t
	116	3 <i>t</i> /4 to <i>t</i>	3 to 1 ards iteh	50 to 40	10 to 20	11/12 of t ; or t for $\alpha \le 45^{\circ}$

ISO 10863:2011

8.6 Temperature https://standards.iteh.ai/catalog/standards/sist/9ff5834a-8af9-4530-96cf-23e2bf41aa53/iso-10863-2011

When using conventional probes and couplants, the surface temperature of the object under examination shall be in the range 0 °C to 50 °C.

For temperatures outside this range, the suitability of the equipment shall be verified.

8.7 Couplant

In order to generate proper images, a couplant shall be used which provides a constant transmission of ultrasound between the probes and the material.

The couplant used for calibration shall be the same as that used in subsequent testing and post-calibrations.

8.8 Provision of datum points

In order to ensure repeatability of the testing, a permanent reference system shall be applied.

Testing of base material

The base material does not generally require prior inspection for laminations (typically by using ultrasonic testing with straight beam probes), as they are detected during the TOFD weld testing. Nevertheless, the presence of discontinuities in the base material adjacent to the weld can lead to obscured areas or to difficulties in interpretation of the data.

10 Range and sensitivity settings

10.1 Settings

10.1.1 General

Setting of range and sensitivity shall be carried out prior to each testing in accordance with this International Standard and EN 583-6. Any change of the TOFD setup, e.g. probe centre separation (PCS), requires a new setting.

Noise should be minimized, e.g. by signal averaging.

10.1.2 Time window

The time window shall at least cover the depth range as shown in Table 2:

- a) for full-thickness testing using only one setup, the time window recorded should start at least 1 μs prior to the time of arrival of the lateral wave, and should where possible extend beyond the first mode-converted back-wall signal;
- b) if more than one setup is used, the time windows shall overlap by at least 10 % of the depth range.

The start and extent of the time windows shall be verified on the test object.

10.1.3 Time-to-depth conversion eh STANDARD PREVIEW

For a given PCS, setting of time-to-depth conversion is best carried out using the lateral wave signal and the back-wall signal with a known material velocity.

ISO 10863:2011

This setting has to be verified (formall desting levels) by a suitable block of known thickness (accuracy 0,05 mm). At least one depth measurement has to be performed in the depth range of interest, typically by recording a minimum of 20 A-scans.

The measured thickness or depth shall be within 0,2 mm of the actual or known thickness or depth. For curved components geometrical corrections may be necessary.

10.1.4 Sensitivity settings

For all testing levels the sensitivity shall be set on the test object. The amplitude of the lateral wave shall be between 40 % and 80 % of full screen height (FSH). In cases where the use of the lateral wave is not appropriate (e.g. surface conditions, use of steep beam angles), the sensitivity shall be set such that the amplitude of the back-wall signal is between 18 dB and 30 dB above FSH. When the use of neither a lateral wave nor a back-wall signal is appropriate, sensitivity should be set such that the material grain noise is between 5 % and 10 % FSH.

For testing levels B, C, and D, it shall be verified by the use of blocks that the sensitivity is sufficient to detect real discontinuities in the respective depth zone or, if not available, machined discontinuities (notches, side-drilled holes, etc.), see 10.3.

10.2 Checking of the settings

Checks to confirm the range and sensitivity settings shall be performed at least every 4 h and on completion of the examination. Checks shall also be carried out whenever a system parameter is changed or changes in the equivalent settings are suspected. If a reference block was used for the initial setup, the same reference block should be used for subsequent checks. Alternatively, a smaller block with known transfer properties may be used, provided that this is cross-referenced to the initial reference block.