INTERNATIONAL STANDARD

First edition 2012-10-01

Non-destructive testing of welds — Ultrasonic testing — Use of automated phased array technology

Contrôle non destructif des assemblages soudés — Contrôle par ultrasons — Utilisation de la technique multi-éléments automatisés

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 13588:2012</u> https://standards.iteh.ai/catalog/standards/sist/bdc1c2ad-977c-4f8f-a54a-2468a0476020/iso-13588-2012

Reference number ISO 13588:2012(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 13588:2012</u> https://standards.iteh.ai/catalog/standards/sist/bdc1c2ad-977c-4f8f-a54a-2468a0476020/iso-13588-2012

COPYRIGHT PROTECTED DOCUMENT

© ISO 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Page

Contents

Foreword	iv
1 Scope	. 1
2 Normative references	. 1
3 Terms and definitions	. 2
4 Testing levels	. 2
 5 Information required prior to testing	. 4 . 4 . 4
 6 Requirements for personnel and equipment. 6.1 Personnel qualifications. 6.2 Equipment. 	. 5 . 5 . 5
 7 Preparation for testing 7.1 Volume to be inspected 7.2 Verification of test set-up 7.3 Scan increment setting 7.4 Geometry considerations 7.5 Preparation of scanning surfaces 7.6 Temperature Teh STANDARD PREVIEW 7.7 Couplant 	5 5 6 6 6 6 6
8 Testing of base material (standards.iteh.ai)	. 7
9 Range and sensitivity settings 9.1 Settings 9.2 Checking of the settings 9.3 Reference blocks	. 7 . 7 . 8 . 8
10 Equipment checks	. 9
11 Procedure qualification	. 9
12 Weld testing	. 9
13 Data storage	10
 14 Interpretation and analysis of phased array data	10 10 10 10 11 11
15 Test report	11
Annex A (informative) Typical reference blocks and reference reflectors	13
Bibliography	17

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 13588 was prepared by the European Committee for Standardization (CEN) in collaboration with ISO Technical Committee TC 44, *Welding and allied processes*, Subcommittee SC 5, *Testing and inspection of welds*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

Requests for official interpretations of any aspect of this International Standard should be directed to the Secretariat of ISO/TC 44/SC 5 via your national standards body. A complete listing of these bodies can be found at www.iso.org.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 13588:2012</u> https://standards.iteh.ai/catalog/standards/sist/bdc1c2ad-977c-4f8f-a54a-2468a0476020/iso-13588-2012

Non-destructive testing of welds — Ultrasonic testing — Use of automated phased array technology

1 Scope

This International Standard specifies the application of the phased array technology for the semi- or fully automated ultrasonic testing of fusion-welded joints in metallic materials of minimum thickness 6 mm. It applies to full penetration welded joints of simple geometry in plates, pipes, and vessels, where both the weld and parent material are low-alloyed carbon steel.

Where material-dependent ultrasonic parameters are specified in this International Standard, they are based on steels having an ultrasonic sound velocity of (5 920 \pm 50) m/s for longitudinal waves, and (3 255 \pm 30) m/s for transverse waves. It is necessary to take this fact into account when examining materials with a different velocity.

This International Standard provides guidance on the specific capabilities and limitations of phased array technology for the detection, location, sizing and characterization of discontinuities in fusion-welded joints. Phased array technology can be used as a stand-alone technology or in combination with other non-destructive testing (NDT) methods or techniques, for manufacturing inspection, pre-service and for in-service inspection.

This International Standard specifies four testing levels, each corresponding to a different probability of detection of imperfections reh STANDARD PREVIEW

This International Standard permits assessment of indications for acceptance purposes based on either amplitude (equivalent reflector size) and length or height and length.

This International Standard does not include acceptance levels for discontinuities.

https://standards.iteh.ai/catalog/standards/sist/bdc1c2ad-977c-4f8f-a54a-This International Standard is not applicable: 2468a0476020/iso-13588-2012

- for coarse-grained metals and austenitic welds;
- for automated testing of welds during the production of steel products covered by ISO 10893-8,^[3]
 ISO 10893-11,^[4] and ISO 3183.^[1]

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 9712, Non-destructive testing — Qualification and certification of NDT personnel

ISO 10863, Non-destructive testing of welds — Ultrasonic testing — Use of time-of-flight diffraction technique (TOFD)

ISO 17635, Non-destructive testing of welds — General rules for metallic materials

ISO 17640, Non-destructive testing of welds — Ultrasonic testing — Techniques, testing levels, and assessment

EN 473, Non-destructive testing — Qualification and certification of NDT personnel — General principles

EN 1330-4, Non-destructive testing — Terminology — Part 4: Terms used in ultrasonic testing

EN 16392-1, Non-destructive testing — Characterization and verification of ultrasonic phased array systems — Part 1: Instruments

EN 16392-2, Non-destructive testing — Characterization and verification of ultrasonic phased array systems — Part 2: Probes

EN 16392-3, Non-destructive testing — Characterization and verification of ultrasonic phased array systems — Part 3: Complete systems

EN 16018, Non-destructive testing — Terminology — Terms used in ultrasonic testing with phased arrays

3 Terms and definitions

For the purposes of this document, the terms and definitions given in EN 1330-4 and EN 16018 and the following apply.

3.1

phased array set-up

probe arrangement defined by probe characteristics (e.g. frequency, probe element size, beam angle, wave mode), probe position, and the number of probes

3.2

phased array image

one- or two-dimensional display, constructed from the collected information of phased array operation

3.3

probe position

PP

34

distance between the front of the wedge and the weldcentreline PREVIEW

(standards.iteh.ai)

phased array indication

pattern or disturbance in the phased array image which may need further evaluation

3.5

https://standards.iteh.ai/catalog/standards/sist/bdc1c2ad-977c-4f8f-a54a-2468a0476020/iso-13588-2012

skewed scan

scan performed with a skewed angle

NOTE The skewed angle can be achieved electronically or by means of probe orientation

3.6

scan increment

distance between successive data collection points in the direction of scanning (mechanically or electronically)

4 Testing levels

Quality requirements for welded joints are mainly associated with the material, welding process and service conditions. To accommodate all of these requirements, this International Standard specifies four testing levels (A, B, C, and D).

From testing level A to testing level C, an increasing probability of detection is achieved by an increasing testing coverage, e.g. number of incidences, combining techniques.

Testing level D may be agreed for special application using a written procedure which shall take into account the general requirements of this International Standard. This includes tests of metals other than ferritic steel, tests on partial penetration welds, tests with automated equipment, tests at object temperatures outside the range.

In general, the testing levels are related to quality levels (e.g. ISO 5817^[2]). The appropriate testing level can be specified by standards for testing of welds (e.g. ISO 17635), product standards or other documents. When ISO 17635 is specified, the recommended testing levels are as given in Table 1.

Testing level	Quality level in ISO 5817 ^[2]		
A	C, D		
В	В		
С	by agreement		
D	special application		

Table 1 –	– Recommended	testing	levels
-----------	---------------	---------	--------

Table 2 shows the minimum requirements and in all cases as described in 7.2 the set-up shall be verified with a reference block. In cases where scanning is from one face (excluding TOFD), half and full skip shall be used and stored; if scanning is performed from both faces, half skip is sufficient.

If the evaluation of the indications is based on amplitude only, the deviation from the normal to the weld shall not exceed 6° .

	Testing levels				
Mada	А	В	с	Example of electric	
Reference block (see Annex A)			iex A)	Example of sketches	
	Block A	Block B	Block C		
	Tob C	Test set-up			
Fixed angles at fixed probe position to weld (line scans) ^a	Two sides	Not suitable as single	1.al) wo sides		
Fixed angles with raster scanning ^a ht	One side ps://standards.it	ISO 13588:2012 One side eh.ai/catalog/standards/sist/bdc 2468a0476020/iso-13588-2	One side 1c2ad-977c-418f-a54		
E-scan at fixed probe position (line scan) ^a	One side	Two sides with two angles ^c	Two sides		
S-scan at fixed probe position to weld (line scan) ^a	One side	Two sides or two probe positions	Two sides or two probe positions		
S-scan raster	Not recommended		One side		
TOFD generated with phased array ^a	Not recommended, TOFD testing in accordance with ISO 10863		One set-up		
Skewed scan ^b	If required by specification				
^a For testing level C, at least two different test set-ups from this table shall be combined; at least one of them shall be S-scan or TOFD.					

Table 2 — Description of testing levels

^b If detection of transverse discontinuities is required by specification, a suitable additional test set-up shall be applied. Skewed probe or electronically skewed beam can be used.

c At least 10° difference.

5 Information required prior to testing

5.1 Items to be defined prior to procedure development

Information on the following items is required:

- a) purpose and extent of testing;
- b) testing levels;
- c) acceptance criteria;
- d) specification of reference blocks;
- e) manufacturing or operation stage at which the testing is to be carried out;
- f) weld details and information on the size of the heat-affected zone;
- g) requirements for access and surface conditions and temperature;
- h) personnel qualifications;
- i) reporting requirements.

5.2 Specific information required by the operator before testing

Before any testing of a welded joint can begin, the operator shall have access to all the information as specified in 5.1 together with the following additional information: (standards.iteh.ai)

- a) written test procedure;
- c) joint preparation and dimensions; 2468a0476020/iso-13588-2012
- d) welding instruction or relevant information on the welding process;
- e) time of inspection relative to any post-weld heat treatment;
- f) result of any parent metal testing carried out prior to and/or after welding.

5.3 Written test procedure

For all testing levels a written test procedure is required.

A procedure shall be written and shall include the following information as a minimum:

- a) the purpose and extent of testing;
- b) testing techniques;
- c) testing levels;
- d) personnel qualification/training requirements;
- e) equipment requirements (including but not limited to frequency, sampling rate, pitch between elements, element size);
- f) reference and/or test blocks;
- g) the setting of equipment;
- h) available access and surface conditions;

- i) the testing of parent material;
- j) the evaluation of indications;
- k) acceptance levels and/or recording levels;
- I) reporting requirements;
- m) environmental and safety issues.

The procedure shall include a documented testing strategy or scan plan showing probe placement, movement, and component coverage that provides a standardized and repeatable methodology for weld testing. The scan plan shall also include ultrasonic beam angles used, beam directions with respect to the weld centreline, and volume examined for each weld.

6 Requirements for personnel and equipment

6.1 Personnel qualifications

Personnel performing testing in accordance with this International Standard shall be qualified to an appropriate level in accordance with EN 473, ISO 9712 or equivalent in the relevant industrial sector.

In addition to a general knowledge of ultrasonic weld inspection, the operators shall be familiar with and have practical experience in the use of phased arrays. Specific training and examination of personnel should be performed on representative pieces. These training and examination results should be documented. If this is not the case, specific training and examination should be performed with the finalized ultrasonic testing procedures and selected ultrasonic testing equipment on representative samples containing natural or artificial reflectors similar to those expected. These training and examination results should be documented.

6.2 Equipment

<u>ISO 13588:2012</u>

https://standards.iteh.ai/catalog/standards/sist/bdc1c2ad-977c-4f8f-a54a-

2468a0476020/iso-13588-2012

6.2.1 General. In selecting the system components (hardware and software) CEN/TR 15134^[6] gives useful information.

6.2.2 Ultrasonic equipment and display. Ultrasonic equipment used for the phased array testing should be in accordance with the requirements of EN 16392-1, EN 16392-2, and EN 16392-3 when applicable.

The equipment shall be able to select an appropriate portion of the time base within which A-scans are digitized.

It is recommended that a sampling rate of the A-scan be used of at least six times the nominal probe frequency.

6.2.3 Ultrasonic probes. Both longitudinal and shear wave modes may be used.

Adaptation of probes to curved scanning surfaces shall comply with ISO 17640. When adapted probes are used, the influence on the sound beam shall be taken into account.

6.2.4 Scanning mechanisms. To achieve consistency of the images (collected data), guiding mechanisms and scan encoder(s) shall be used.

7 Preparation for testing

7.1 Volume to be inspected

The purpose of the testing shall be defined by specification. Based on this, the volume to be inspected shall be determined.

For tests at the manufacturing stage, the testing volume shall include the weld and parent material for at least 10 mm on each side of the weld (5 mm for laser welds and for electron beam welds), or the width of the heat-affected zone (based on the manufacturer's information), whichever is greater.

A scan plan should be provided. The scan plan should show the beam coverage, the weld thickness and the weld geometry.

Ensure that the sound beam(s) cover(s) the volume to be tested.

7.2 Verification of test set-up

The capability of the test set-up shall be verified by the use of reference blocks.

7.3 Scan increment setting

The scan increment setting along the weld is dependent upon the wall thickness to be examined. For thicknesses up to 10 mm, the scan increment shall be no more than 1 mm. For thicknesses between 10 mm and 150 mm, the scan increment shall be no more than 2 mm. Above 150 mm, a scan increment of 3 mm is recommended.

The scan increment setting perpendicular to the weld when applicable shall be chosen in order to ensure the coverage of the examination volume.

When TOFD is used, the scan increment shall be in accordance with ISO 10863.

7.4 Geometry considerations h STANDARD PREVIEW

Care should be taken when examining welds of complex geometry, e.g. weld joining materials of unequal thickness, materials that are joined at an angle or nozzles. These tests should be planned carefully and require in-depth knowledge of sound propagation and shall always be carried out under testing level D.

ISO 13588:2012

For level D tests scan plan(s), representative reference ablock(s) cland a performance demonstration are mandatory (see Annex A). 2468a0476020/iso-13588-2012

NOTE In some cases, the number of reference blocks can be reduced by use of simulation programs.

7.5 Preparation of scanning surfaces

Scanning surfaces shall be clean in an area wide enough to permit the testing volume to be fully covered.

Scanning surfaces shall be even and free from foreign matter likely to interfere with probe coupling (e.g. rust, loose scale, weld spatter, notches, grooves). Waviness of the test surface shall not result in a gap between a probe and the test surface greater than 0,5 mm. These requirements shall be ensured by dressing the scanning surface, if necessary.

Scanning surfaces may be assumed to be satisfactory if the surface roughness, Ra, is not greater than 6,3 µm for machined surfaces, or not greater than 12,5 µm for shot-blasted surfaces.

When coating, paint, cladding etc. is present and is not to be removed, testing level D is applicable.

7.6 Temperature

When not using special high temperature phased array probes and couplants, the surface temperature of the object under testing shall be in the range 0 $^{\circ}$ C to 50 $^{\circ}$ C.

For temperatures outside this range, the suitability of the equipment shall be verified.

7.7 Couplant

In order to generate proper images, a couplant shall be used which provides a constant transmission of ultrasound between the probes and the material.

The couplant used for calibration shall be the same as that used in subsequent testing and post-calibrations.

8 Testing of base material

When the test is performed according to this International Standard, a lamination test shall be performed. This may be carried out as part of or independent of the test.

9 Range and sensitivity settings

9.1 Settings

9.1.1 General

Setting of range and sensitivity shall be carried out prior to each test in accordance with this International Standard. Any change of the phased array set-up, e.g. probe position (PP) and steering parameters, requires a new setting.

Signal-to-noise ratio should be optimized with a minimum of 12 dB for the reference signals, when using A-scans, or with a minimum of 6 dB when using images.

9.1.2 Pulse echo time window

If applicable, the time window used for pulse echo signals shall include the volume of interest and be described in the written test procedure.

Ensure that the combination of beams covers the area of interest.

9.1.3 Pulse echo sensitivity settings ISO 13588:2012

https://standards.iteh.ai/catalog/standards/sist/bdc1c2ad-977c-4f8f-a54a-2468a0476020/iso-13588-2012

9.1.3.1 General

After selection of the mode (fixed angle, E-scan, S-scan) the following shall be carried out:

- a) sensitivity shall be set for each beam generated (beam angle, focal point etc.) by the phased array probe;
- b) when a probe with wedge is used the sensitivity shall be set with the wedge in place.

9.1.3.2 Focusing

Different modes of focusing can be applied with phased array probes, e.g. static and dynamic depth focusing (DDF).

When focusing is used, the sensitivity shall be set for each focused beam.

9.1.3.3 Gain corrections

The use of angle-corrected gain (ACG) and time-corrected gain (TCG) enables the display of signals for all beam angles and all distances with the same amplitude.

9.1.3.4 Sensitivity settings for different modes of phased array testing

For weld testing, different modes can be applied, e.g. fixed angles, E-scans, S-scans. After the previous steps, the reference sensitivity for each beam generated shall be set according to ISO 17640, including transfer correction if applicable.

9.1.4 TOFD settings

If TOFD testing is performed, all settings shall comply with the requirements specified in ISO 10863.