INTERNATIONAL STANDARD

ISO 15874-3

Second edition 2013-02-15

Plastics piping systems for hot and cold water installations — Polypropylene (PP) —

Part 3: Fittings

iTeh STSystèmes de canalisations en plastique/pour les installations d'eau chaude et froide — Polypropylène (PP) — (Standards iteh.ai) Partie 3: Raccords

ISO 15874-3:2013 https://standards.iteh.ai/catalog/standards/sist/3af98c59-fe34-4232-bdea-79da84205ce1/iso-15874-3-2013

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 15874-3:2013 https://standards.iteh.ai/catalog/standards/sist/3af98c59-fe34-4232-bdea-79da84205ce1/iso-15874-3-2013

COPYRIGHT PROTECTED DOCUMENT

© ISO 2013

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents				
Fore	eword	iv		
Intr	oduction	v		
1	Scope	1		
2	Normative references	1		
3	Terms and definitions, symbols and abbreviated terms 3.2 Mechanical fittings 3.3 Fittings for fusion	2		
4	Material characteristics 4.1 Plastics fitting material 4.2 Metallic fitting material 4.3 Influence on water intended for human consumption	3 5		
5	General characteristics 5.1 Appearance 5.2 Opacity	5		
6	Geometrical characteristics 6.1 General 6.2 Dimensions of sockets for socket fusion and electrofusion fittings 6.3 Dimensions of metallic fittings	6 6		
7	6.3 Dimensions of metallic fittings Mechanical characteristics of plastics fittings 7.1 General 7.2 Fitting material identical to the PP pipe compound 7.3 Fitting made from PP not identical to the PP pipe compound 7.4 Fittings made from plastics other than PP	10 10		
8	7.4 Fittings made from plastics other than PP	13		
9	Sealing elements	13		
10	Performance requirements	13		
11	Marking 11.1 General requirements 11.2 Minimum required marking 11.3 Additional marking	14 14		
Bibl	liography	15		

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

ISO 15874-3 was prepared by Technical Committee CEN/TC 155, *Plastics piping systems and ducting systems*, in collaboration with Technical Committee ISO/TC 138, *Plastics pipes, fittings and valves for the transport of fluids*, and Subcommittee SC 2, *Plastics pipes and fittings for water supplies*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This second edition cancels and replaces the first edition (ISO 15874-3:2003 and ISO 15874-3:2003/Amd 1:2007), which has been technically revised.

The following material has been revised:

- in 4.1.1, Table 1, the material PP RCT has been included; h.ai)
- in 6.2.1, Figure 1 has been simplified, <u>rand sin Tables</u> 3 and 4, the socket length and socket dimensions of socket fusion <u>fittings have been adjusted</u>; ds/sist/3af98c59-fe34-4232-bdea-
- in 6.2.2, Table 5, the socket dimensions for electrofusion fittings have been extended to 160 mm; and
- in 7.4, Tables 6, 7 and 8, values have been adjusted.

ISO 15874 consists of the following parts¹⁾ under the general title *Plastics piping systems for hot and cold water installations* — *Polypropylene (PP)*:

- Part 1: General
- Part 2: Pipes
- Part 3: Fittings
- Part 5: Fitness for purpose of the system
- Part 7: Guidance for the assessment of conformity [Technical specification]

iv

¹⁾ For ancillary equipment separate standards can apply. Guidance on installation of plastics piping systems made from different materials intended to be used for hot and cold water installations is given by CEN/TR 12108 [1].

Introduction

This part of ISO 15874 specifies the requirements for a piping system and its components when made from polypropylene (PP). The piping system is intended to be used for hot and cold water installations.

Regarding potential undesirable effects on the quality of water intended for human consumption, caused by the product covered by ISO 15874

- no information is provided as to whether the product can be used without restriction, and
- existing national regulations concerning the use and/or the characteristics of this product remain in force.

Requirements and test methods for materials and components, other than fittings, are specified in ISO 15874-1 and ISO 15874-2. Characteristics for fitness for purpose (mainly for joints) are covered in ISO 15874-5. ISO/TS 15874-7 gives guidance for the assessment of conformity.

This part of ISO 15874 specifies the characteristics of the fittings.

At the date of publication of this part of ISO 15874, the following system International Standards for piping systems of other plastics materials used for the same application are

- ISO 15875, Plastics piping systems for hot and cold water installations Crosslinked polyethylene (PE-X)
- ISO 15876, Plastics piping systems for hot and cold water installations Polybutylene (PB)
- ISO 15877, Plastics piping systems for hot and cold water installations Chlorinated poly(vinyl chloride) (PVC-C) (standards.iteh.ai)
- ISO 22391, Plastics piping systems for hot and cold water installations Polyethylene of raised temperature resistance (PE-RT) ISO 15874-3:2013
 https://standards.iteh.ai/catalog/standards/sist/3af98c59-fe34-4232-bdea

The International Organization for Standardizations (ISO) draws attention to the fact that it is claimed that compliance with this document may involve the use of a patent.

ISO takes no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right has assured ISO that they are willing to negotiate licences under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holder of this patent right is registered with ISO. Information may be obtained from:

Borealis AG

Wagramerstrasse 17-19, A-1220,

Vienna, Austria

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those identified above. ISO shall not be held responsible for identifying any or all such patent rights.

ISO (www.iso.org/patents) and IEC (http://patents.iec.ch) maintain on-line databases of patents relevant to their standards. Users are encouraged to consult the databases for the most up to date information concerning patents.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 15874-3:2013

https://standards.iteh.ai/catalog/standards/sist/3af98c59-fe34-4232-bdea-79da84205ce1/iso-15874-3-2013

Plastics piping systems for hot and cold water installations — Polypropylene (PP) —

Part 3: Fittings

1 Scope

This part of ISO 15874 specifies the characteristics of fittings for polypropylene (PP) piping systems intended to be used for hot and cold water installations within buildings for the conveyance of water, whether or not intended for human consumption (domestic systems) and for heating systems under design pressures and temperatures according to the class of application (see ISO 15874-1:2013, Table 1).

It covers a range of service conditions (application classes) and design pressure classes. For values of T_D , T_{max} and T_{mal} in excess of those in Table 1 of ISO 15874-1:2013 do not apply.

NOTE It is the responsibility of the purchaser or specifier to make the appropriate selections from these aspects, taking into account their particular requirements and any relevant national regulations and installation practices or codes.

iTeh STANDARD PREVIEW

It also specifies the parameters for the test methods referred to in this part of ISO 15874.

In conjunction with the other parts of ISO 15874, this part of ISO 15874 is applicable to fittings made from PP and to fittings made from other materials which are intended to be fitted to pipes conforming to ISO 15874-2 for hot and cold water installations, whereby the joints conform to the requirements of ISO 15874-5.

This part of ISO 15874 is applicable to fittings of the following types:

- socket fusion fittings;
- electro fusion fittings;
- mechanical fittings;
- fittings with incorporated inserts.

It is also applicable to fittings made from alternative materials which when fitted to pipes conforming to ISO 15874-2, conform to the requirements of ISO 15874-5.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 228-1, Pipe threads where pressure-tight joints are not made on the threads — Part 1: Dimensions, tolerances and designation

ISO 3126, Plastics piping systems — Plastics components — Determination of dimensions

ISO 1133-1, Plastics — Determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MVR) of thermoplastics.

ISO 1167-1 Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 1: General method

ISO 15874-3:2013(E)

ISO 1167-3 Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 3: Preparation of components

ISO 1167-4 Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 4: Preparation of assemblies

ISO 7686, Plastics pipes and fittings — Determination of opacity

ISO 9080, Plastics piping and ducting systems — Determination of the long-term hydrostatic strength of thermoplastics materials in pipe form by extrapolation

ISO 15874-1:2013, Plastics piping systems for hot and cold water installations — Polypropylene (PP) — Part 1: General

ISO 15874-2:2013, Plastics piping system for hot and cold water installations — Polypropylene (PP) — Part 2: Pipes

ISO 15874-5, Plastics piping system for hot and cold water installations — Polypropylene (PP) — Part 5: Fitness for purpose of the system

EN 681-1, Elastomeric seals — Materials requirements for pipe joint seals used in water and drainage applications — Part 1: Vulcanized rubber.

EN 681-2, Elastomeric seals — Materials requirements for pipe joint seals used in water and drainage applications — Part 2: Thermoplastic elastomers.

EN 1254-3, Copper and copper allows — Plumbing fittings — Part 3: Fittings with compression ends for use with plastics pipes.

EN 10088-1, Stainless steels — Part 1: List of stainless steels.

EN 10226-1, Pipe threads where pressure-tight joints are made on the threads — Part 1: Taper external threads and parallel internal treads day Dimensions; tolerances and designation 32-bdea-79da84205ce1/iso-15874-3-2013

3 Terms and definitions, symbols and abbreviated terms

For the purposes of this document, the terms and definitions, symbols and abbreviations given in ISO 15874-1 and the following apply

3.1

fitting

component of a piping system, which connects two or more pipes and/or fittings together, without any further function

3.2 Mechanical fittings

3.2.1

compression fitting

fitting in which the joint is made by the compression of a ring or sleeve on the outside wall of the pipe with or without additional sealing elements and with internal support

3.2.2

crimped fitting

fitting in which the joint is made by crimping of the fitting and/or a ring on the outside wall of the pipe by means of a special tool

3.2.3

flanged fitting

fitting in which the pipe connection consists of two mating flanges which are mechanically pressed together and sealed by the compression of an elastomeric sealing element between them

3.2.4

flat seat union fitting

fitting in which the pipe connection consists primarily of two components, at least one of which normally incorporates a flat sealing surface, which are mechanically pressed together by means of screwed nut or similar and sealed by the compression of an elastomeric sealing element between them

3.3 Fittings for fusion

3.3.1

socket fusion fitting

fitting in which the joint with the pipe is made by melting together the outer part of the pipe with the inner part of the fitting by means of heat induced by heated tool

3.3.2

electro fusion fitting

fitting in which the joint with the pipe is made by melting together the outer part of the pipe and the inner part of the fitting by means of heat induced by current flowing in an appropriate resistor inserted in the fitting body

3.4

fitting with incorporated inserts

fitting in which the joint is made by means of connecting threads or other outlets, inserted in the plastics body combined with fusion ends for socket fusion or electro fusion

4 Material characteristics TANDARD PREVIEW

(standards.iteh.ai)

4.1 Plastics fitting material

ISO 15874-3:2013

4.1.1 Fitting material identical to the Pripipe compound fe34-4232-bdea-

79da84205ce1/iso-15874-3-2013

The PP compound shall comply with ISO 15874-1:2013, 5.1.

The material shall be tested in form of tubular test pieces.

When tested in accordance with the test methods specified in Table 1, using the indicated parameters, the test pieces shall withstand the hydrostatic test pressure, p_F , given in Table 6, 7, 8 or 9 without bursting or leakage.

Table 1 — Mechanical characteristic of tubular test pieces made of PP by injection moulding

Characteristic	Requirement	Test par	Test method					
Resistance to	No bursting or	РР-Н				ISO 1167-1 and		
internal pressure	leakage during the test period	Hydrostatic (hoop) stress MPa	Test temp. °C	Test period	Number of test pieces	ISO 1167-3		
		21,0	20	1	3	1		
		3,6	95	1000	3	1		
		·	1					
		Hydrostatic (hoop) stress	Test temp.	Test period	Number of test pieces			
		MPa 16,0	°C 20	h 1	3	-		
			95	1000	3	-		
		2,6 95 1000 3 PP-R						
		Hydrostatic (hoop) stress MPa	Test temp. °C	Test period h	test pieces			
		16,0	20	1	3	1		
	iT	eh STAN						
		Hydrostatic (hoop) stress MPa	a řest. temp. O 15864-3:2	1	Number of test pieces			
	https://si	andards 1 (5),0ai/catalo		st/3af98c 1 9-fe34-4	232-bd ⊰ ı-]		
		3,8 ^{79da8420}	5ce1/jsp-158	⁷⁴⁻³⁻²⁰¹ 300	3]		
		Test parameters for all tests						
		Sampling procedu Type of end cap Orientation of tes Type of test		a Type A Not specified Water-in-wate	er			
The sampling procedure is not specified. For guidance see ISO/TS 15874-7 [2].								

4.1.2 PP Fitting material not identical to the PP pipe compound

4.1.2.1 Evaluation of σ_{LPL} -values and control points

The fitting material in form of injection-moulded or extruded tubular test pieces shall be evaluated by using the method given in ISO 9080 or equivalent where internal pressure tests are made in accordance with ISO 1167-1 and ISO 1167-3 to find the σ_{LPL} -values. The σ_{LPL} -values thus determined shall be used to determine the design stress, σ_{DF} , (see Annex A of ISO 15874-2:2013) and values of hydrostatic stress, σ_{F} , corresponding to the temperature and time control points given in Table 2.

NOTE One equivalent way of evaluation is to calculate the σ_{LPL} -value for each temperature (for example 20 °C, 60 °C and 95 °C) individually.

If evaluation using the method given in ISO 9080 or equivalent is available from long-term internal pressure tests relative to extruded pipes of the same compound as used for the fitting, the relevant test temperature shall be equal to or higher than the maximum design temperature, $T_{\rm max}$, for the service condition class.

Table 2 — Control points for testing fitting materials with tubular test pieces relative to classification of service conditions

	All application	Application				
	classes	Class 1	Class 2	Class 4	Class 5	
Maximum design temperature , T_{max} , in °C	_	80	80	70	90	
Test temperature , T_{Test} , in °C	20	95 a	95 a	80	95	
Test duration, in h	1	1000	1000	1000	1000	
a Conducted at 95 °C to match existing test facilities.						

It is recommended that the nominal diameter of the injection-moulded tubular test pieces should be in the range of the nominal diameters of fittings normally produced by the manufacturer.

4.1.2.2 Thermal stability

When testing the thermal stability by hydrostatic pressure testing in accordance with ISO 1167-1 at 110 °C for 8 760 h, using a test piece in pipe form or a fitting connected to pipes, the test piece shall withstand the test without bursting. The test shall be conducted in water-in-air at an internal pressure equivalent to the hydrostatic stress used in the pipe material thermal stability test.

If a fitting connected to pipes is used as a test piece and the pipe connection fails then the thermal stability test shall be repeated using a test piece in pipe form.

4.1.3 Plastics fitting material other than pros. iteh.ai)

Plastics material, other than PP, for fittings intended to be used in PP piping systems for hot and cold water within buildings for the conveyance of water whether or not for human consumption (domestic systems) and for heating systems shall conform to 4:1.23-2013

4.2 Metallic fitting material

Metallic material for fittings intended to be used with components conforming to ISO 15874 shall conform to the requirements given in EN 1254-3 or EN 10088-1, as applicable.

4.3 Influence on water intended for human consumption

The material shall conform to ISO 15874-1.

5 General characteristics

5.1 Appearance

When viewed without magnification, the internal and external surfaces of fittings shall be smooth, clean and free from scoring, cavities, and other surface defects to an extent that would prevent conformity to this standard. The material shall not contain visible impurities. Slight variations in appearance of the colour shall be permitted. Each end of a fitting shall be square to its axis.

5.2 Opacity

Fittings that are declared to be opaque shall not transmit more than 0,2 % of visible light when tested in accordance with ISO 7686.

NOTE This test is not necessary when the fitting body is made from a compound already declared opaque for the production of pipes.