ISO/IEC 18026:2009(E)

11 Application program interface

11.1 Introduction

This International Standard specifies an API for the SRF operations in Clause 5 and Clause 10. The API
specifies non-object data types (see 11.2), and object classes (see 11.3) used to perform the spatial
operations. Two functions are provided to create certain object instances (see 11.4 and 11.5). Two query
functions are also provided to indicate the extent of support of an API implementation for a profile of the SRM
(see 11.6 and Clause 12). The API also specifies data storage structures for the representation of SRM
concepts that are not used to perform spatial operations (see 11.9).

Class is the term used to categorize the general form of object instances. Each class definition specifies the
methods (if any) that operate on the object. Methods are specified by giving their syntax (input and output
parameters), semantics (how the inputs interact with the state of an instance of the class and produce any
outputs), and error conditions. In particular, the state of an instance of the class is implicitly an input for each
of its methods with the exception of the Create method. The Create method of an object depends only on
its explicit inputs. The state of a class instance may change only as the result of applying a method of the
class.

The active objects created as instances of a given class are reliably denoted by object references. Once
created, objects exist and respond to method invocations until they are destroyed. The property of being
created and existing until destruction is termed the object life cycle. Classes inherit methods from other
classes through the subclass/superclass relationship. Method inheritance is transitive: a subclass also inherits
the methods that have been inherited by its superclass.

Non-object data types do not have an object life cycle nor do they have operations other than those defined by
a programming language that this APl might be bound to.

EXAMPLE Integer is a non-object data type. Programming languages to which this APl may be bound have
definition mechanisms and operations for creating and then performing arithmetic operations on integers as variables
and/or constants in the programming language.

The API specifies seven abstract classes (see 11.3.3 and 11.3.5):

a) LifeCycleObject,

b) BaseSRF,
C) BaseSRF2D,
d) BaseSRF3D,

€) BaseSRFwithTangentPlaneSurface,

f) BaseSRFwithEllipsoidalHeight, and

g) BaseSRFMapProjection.

These abstract classes are used as base classes from which subclasses including concrete classes inherit
common sets of methods. LifeCycleObject includes the creation and destruction methods that all other
classes inherit. The LifeCycleObject creation method specification may be overridden in a concrete
subclass to provide subclass specific inputs and error conditions. The use of abstract classes in this
International Standard is solely for the purpose of specifying common methods in only one place instead of
repeating the same specification in each concrete class for which it applies. APl implementations are not
required to implement abstract classes.

The API specifies six classes whose methods are not exposed as part of the API:

219 © ISO/IEC 2009 — All rights reserved

https://standards.iteh.ai/catalog/standards/iso/bddbeeea-ba53-43e2-b92a-05032bec66f1/iso-iec-18026-2009

ISO/IEC 18026:2009(E)

a) three coordinate classes: Coordinate2D, Coordinate3D, and SurfaceCoordinate,

b) one direction class Direction and

c) two position classes: Position2D, and Position3D.

These classes are private classes that hide all aspects of the implementation of instances of these objects
from the application.

The API specifies a set of concrete classes that correspond to specific SRFTs specified in Clause 8 (see
11.3.6 through 11.3.10). An instance of one of these concrete classes corresponds to a specific SRF.

Instances of concrete SRF classes that correspond to the coded collection of SRFT instances specified in
Table 8.30 are created by the function CreateStandardSRF. CreateStandardSRF takes the
corresponding SRF_Code (see 11.4) as an input.

Instances of concrete SRF classes that correspond to the members of SRF Sets specified in Table 8.31 are
also created by the function CreateSRFSetMember. CreateSRFSetMember takes an SRFS Code Info
(see 11.5) as an input.

The class hierarchy is illustrated in Figure 11.1. Procedural rules for using LifeCycleObjectS in
applications and examples of use of the API are provided in 11.8.

11.2 Non-object data types

11.2.1 Overview

Basic non-object data types represent single pieces of information such as numbers, codes, and other
individual data items. Structured data types represent data records of basic non-object data types.

11.2.2 Abbreviations

Table 11.1 lists the SRFTs and their abbreviations used in the formation of enumerant names and record
element names of non-object types.

Table 11.1 — SRFT abbreviations

Abbreviation SRFT
cC Celestiocentric

CD Celestiodetic

CM Celestiomagnetic

EC Equidistant Cylindrical

El Equatorial Inertial

HAEC Heliospheric Aries Ecliptic
HEEC Heliospheric Earth Ecliptic
HEEQ Heliospheric Earth Equatorial
LCC Lambert Conformal Conic
LCE_3D Lococentric Euclidean 3D
LSA Local Space Azimuthal

220 © ISO/IEC 2009 — All rights reserved

https://standards.iteh.ai/catalog/standards/iso/bddbeeea-ba53-43e2-b92a-05032bec66f1/iso-iec-18026-2009

ISO/IEC 18026:2009(E)

Abbreviation SRFT
LSP Local Space Polar

LSR_2D Local Space Rectangular 2D
LSR_3D Local Space Rectangular 3D
LTSAS Local Tangent Space Azimuthal Spherical
LTSC Local Tangent Space Cylindrical
LTSE Local Tangent Space Euclidean
M Mercator

OMS Oblique Mercator Spherical

PD Planetodetic

PS Polar Stereographic

SEC Solar Ecliptic

SEQ Solar Equatorial

SMD Solar Magnetic Dipole

SME Solar Magnetic Ecliptic

™ Transverse Mercator

11.2.3 Numbers
Two categories of numbers are specified: integer numbers and floating-point humbers. The general-purpose

integer data types are Integer Positive and Integer. All implementations that conform to this standard
shall support at least the minimum ranges for values of these data types as specified in Table 11.2.

Table 11.2 — Integer data types

Data type Value range
Integer Positive [1,4 294 967 295]
Integer [-2 147 483 647, 2 147 483 647]

Long Float is a non-object data type defined for floating-point numbers. This data type corresponds to the
double precision floating-point data type specified by IEC 60559. However, implementations on architectures
that support other floating-point representations are allowed.

11.2.4 Logicals

The general-purpose logical data type is Boolean. All implementations that conform to this standard shall
support this type as specified in Table 11.3.

Table 11.3 — Logical data type

Data type Values

Boolean [false (or 0), true (or 1)]

221 © ISO/IEC 2009 — All rights reserved

https://standards.iteh.ai/catalog/standards/iso/bddbeeea-ba53-43e2-b92a-05032bec66f1/iso-iec-18026-2009

ISO/IEC 18026:2009(E)

11.2.5 Object_Reference

An Object Reference is an opaque non-object data type that allows an application to reliably access an
instance of an object. Object References may be compared for equality and tested to see if they are equal
to the special value NULL Object. If two Object References are equal, they refer to the same object
instance. If an Object Reference is equal to the special value NULL Object it does not reference any
object instance. In all the method specifications in this clause, whenever an argument passed to or returned
from a method is an object, it is an object reference that is passed.

11.2.6 Enumerated data types

11.2.6.1 Introduction

Enumerated data types are data types whose values are specified from an ordered list of names. The names
are assigned numbers whose values indicate the position within the ordered list. It is these numbers that are
actually manipulated by the implementation. Enumerated data types are a closed list the members of which do
not change based on registration or deprecation. This clause specifies the enumerated data types within this
International Standard.

11.2.6.2 Axis_Direction

This data type represents the values of the axis direction parameter(s) of the SRFTs
LOCAL_SPACE_RECTANGULAR 3D and LOCAL_SPACE_RECTANGULAR 2D.

Axis Direction ::= (POSITIVE PRIMARY AXIS,
POSITIVE SECONDARY AXIS,
POSITIVE TERTIARY AXIS,
NEGATIVE PRIMARY AXIS,
NEGATIVE SECONDARY AXIS,
NEGATIVE TERTIARY AXIS)

11.2.6.3 Coordinate_Valid_Region

This data type represents coordinate location with respect to valid-regions (see 8.3.2.4).

Coordinate Valid Region ::= (VALID,
EXTENDED VALID,
DEFINED)

VALID denotes a coordinate that is contained in the valid-region and in the CS domain.

EXTENDED VALID denotes a coordinate that is contained in the extended valid-region and in the CS
domain but not in the valid-region.

DEFINED denotes a coordinate that is contained in the CS domain but not in the valid or the extended
valid-regions.

11.2.6.4 Interval_Type

This data type is used to specify coordinate-component intervals in the SetvalidRegion,
SetExtendedValidRegion, GetValidRegion, and GetExtendedValidRegion methods of class
BaseSRF3D and in the SetValidGeodeticRegion, SetExtendedValidGeodeticRegion,
GetValidGeodeticRegion, and GetExtendedValidGeodeticRegion methods of class
BaseSRFMapProjection

222 © ISO/IEC 2009 — All rights reserved

https://standards.iteh.ai/catalog/standards/iso/bddbeeea-ba53-43e2-b92a-05032bec66f1/iso-iec-18026-2009

ISO/IEC 18026:2009(E)

Interval Type::= (OPEN INTERVAL, /l The bounded open interval (a, b).
GE LT INTERVAL, /l The bounded interval [a, b).
GT_LE INTERVAL, // The bounded interval (a, b].
CLOSED INTERVAL, // The bounded interval [a, b].
GT_SEMI INTERVAL, // The unbounded interval (a, +infinity).
GE_SEMI INTERVAL, // The unbounded interval [a, +infinity).
LT SEMI INTERVAL, // The unbounded interval (-infinity, b).
LE_SEMI INTERVAL, // The unbounded interval (-infinity, b].
UNBOUNDED /I All values (-infinity, +infinity)

)

11.2.6.5 Polar_Aspect

This data type represents the values of the polar aspect parameter of SRFT POLAR_STEREOGRAPHIC.

Polar Aspect ::= (NORTH,
SOUTH)

11.2.7 Selection data types

11.2.7.1 Introduction

Selection data types are similar to enumerated data types but form a set of entries that may be extended.
Selection data types are all defined to be as distinct sub-data types of the numeric of data type Integer, but
with specific meanings attached to each value. The set of selections may be augmented by assigning
meanings to additional values. Selection data types are otherwise processed in the same manner as
enumerated data types. The integer codes are unique within each concept set, but not between sets. Although
the RT Code is used in combination with an ORM Code, its code space follows the general rule and is
independent of the ORM Code.

In each code space the valid Integer values are 0 and greater. Negative code values are implementation
dependent and non-conforming. In each code space, the Integer value 0 (UNSPECIFIED) is reserved.
Some API methods and functions allow 0 (UNSPECIFIED) as an input Integer code value and/or an output

Integer code value. The valid use of 0 (UNSPECIFIED) is defined in the specification of the appropriate
method or function.

11.2.7.2 CS_Code

The Integer code data type CS Code specifies a CS by its code as defined in Clause 5 or by registration.
Table 5.7 is a directory of CS specifications, each of which includes a code value and a corresponding label.

11.2.7.3 DSS_Code

The Integer code data type DSS Code specifies a DSS by its code as defined in Table 9.2 and in Table
J.20 or by registration. Each DSS specification includes a code value and a corresponding label.

11.2.7.4 ORM_Code

The Integer code data type ORM Code specifies an ORM by its code as defined in Annex E and Annex J or
by registration. Each ORM specification includes a code value and a corresponding label (see Clause 7).

223 © ISO/IEC 2009 — All rights reserved

https://standards.iteh.ai/catalog/standards/iso/bddbeeea-ba53-43e2-b92a-05032bec66f1/iso-iec-18026-2009

ISO/IEC 18026:2009(E)

11.2.7.5 ORMT_Code
The Integer code data type ORMT Code specifies an ORM Template code defined in Clause 7 or by

registration. Table 7.12 is a directory of ORMT specifications, each of which includes a code value and a
corresponding label.

11.2.7.6 RT_Code
The Integer code data type RT Code specifies a reference transformation Hgg. Each RT Code is defined in
Annex E in the entry for the ORM or by registration, specified by the ORM Code value, with which it is
associated. Each reference transformation specification associated with an ORM includes a code value and a
corresponding label.

API methods or functions that require the RT Code data type shall also require its associated ORM Code.

11.2.7.7 SRF_Code

The Integer code data type SRF Code specifies an SRF by its code as defined in Table 8.30 or by
registration. Each SRF specification includes a code value and a corresponding label (see Clause 8).

11.2.7.8 SRFS_Code

The Integer code data type SRFS Code specifies an SRF set by its code as defined in Table 8.48 or by
registration. Each SRF set specification includes a code value and a corresponding label (see Clause 8).

A

N~NoobhowN-20O0O

SRFS_Code 1= (/I implementation_dependent,

SRFS UNSPECIFIED,

SRFS_ALABAMA SPCS,

SRFS GTRS GLOBAL COORDINATE SYSTEN,
SRFS_JAPAN RECTANGULAR PLANE CS,
SRFS LAMBERT NTF,

SRFS UNIVERSAL POLAR STEREOGRAPHIC,
SRFS_UNIVERSAL TRANSVERSE MERCATOR,
SRFS WISCONSIN SPCS,

I reserved for registration)

\4

11.2.7.9 SRFS member types
11.2.7.9.1 Introduction
The Integer code types that specify the SRFS members associated with the SRFS defined in Table 8.48.

11.2.7.9.2 SRFSM_Alabama_SPCS_Code

The Integer code data type SRFSM Alabama SPCS Code specifies a member of the Alabama SPCS
SRFS in Table 8.50 or by registration.

11.2.7.9.3 SRFSM_GTRS_Global_Coordinate_System _Code

The Integer code data type SRFSM GTRS Global Coordinate System Code specifies a member of
the GTRS Global Coordinate System SRFS in Table 8.52 and_Table 8.53 or by registration.

224 © ISO/IEC 2009 — All rights reserved

https://standards.iteh.ai/catalog/standards/iso/bddbeeea-ba53-43e2-b92a-05032bec66f1/iso-iec-18026-2009

ISO/IEC 18026:2009(E)

11.2.7.9.4 SRFSM_Japan_Rectangular_Plane_CS_Code

The Integer code data type SRFSM Japan Rectangular Plane CS Code specifies a member of the
Japan Rectangular Plane CS SRFS in Table 8.55 or by registration.

11.2.7.9.5 SRFSM_Lambert_NTF_Code

The Integer code data type SRFSM Lambert NTF Code specifies a member of the Lambert NTF SRFS in
Table 8.57 or by registration.

11.2.7.9.6 SRFSM_Universal_Polar_Stereographic_Code

The Integer code data type SRFSM Universal Polar Stereographic Code specifies a member of
the Universal Polar Stereographic SRFS in Table 8.59 or by registration.

11.2.7.9.7 SRFSM_Universal_Transverse_Mercator_Code

The Integer code data type SRFSM Universal Transverse Mercator Code specifies a member of
the Universal Transverse Mercator SRFS in Table 8.61 or by registration.

11.2.7.9.8 SRFSM_Wisconsin_SPCS _Code

The Integer code data type SRFSM Wisconsin SPCS Code specifies a member of the Wisconsin SPCS
SRFS Table 8.63 or by registration.

11.2.7.10 SRFT_Code

The Integer code data type SRFT Code specifies an SRFT by its code as defined in Clause 8 or by
registration. Table 8.3 is a directory of SRFT specifications. Each SRFT specification includes a code value
and a corresponding label.

11.2.7.11 Status_Code

The Status Code non-object selection data type specifies the status codes associated with methods on
instances of classes specified in this International Standard. The meaning of values other than SUCCESS
varies according to the class and method or function and is further defined in the “Error conditions” element of
each method or function specification in Table 11.6 through Table 11.48 (see common error conditions in
11.3.2). This selection data type may be extended in a language binding specification.

Status Code i=(< /I implementation_dependent,

UNSPECIFIED, //reserved

SUCCESS, /I the operation was performed successfully
INVALID SRF,

INVALID SOURCE SRF,
INVALID SOURCE COORDINATE,
INVALID TARGET COORDINATE,
INVALID POINT1 COORDINATE,
INVALID POINT2 COORDINATE,

OPERATION UNSUPPORTED,
INVALID SOURCE DIRECTION,

10 INVALID TARGET DIRECTION,

11: INVALID CODE,

12 : INVALID INPUT,

13: CREATION FAILURE,

O©OoONOOODWN-~O0O0

225 © ISO/IEC 2009 — All rights reserved

https://standards.iteh.ai/catalog/standards/iso/bddbeeea-ba53-43e2-b92a-05032bec66f1/iso-iec-18026-2009

ISO/IEC 18026:2009(E)

14 . DESTRUCTION FAILURE

15: FLOATING OVERFLOW,

16 : FLOATING UNDERFLOW,

17 © FLOATING POINT ERROR,

18 : MEMORY ALLOCATION ERROR,
>18 . /l reserved for language binding specification)

11.2.8 Array data types

11.2.8.1 Introduction

Array data types specify an ordered set whose elements may be of any single data type. Table 11.4 specifies
the notation for Array data types.

Table 11.4 — Array data type notation

Data type Notation
One-dimensional array Data_Type_Name[length]
Two-dimensional array Data_Type_Name[rows, cloumns]

The symbols “length”, "rows", and "columns" are positive integers. The length of a one-dimensional array is
specified by "length". When the length is specified by another field of a record data type or by a function
parameter, the field name or function parameter name that will be used to indicate that the size of the array is
obtained from the value of that construct. The index of the first element in the array is either “0” or “1”
depending on the language binding.

For two-dimensional arrays, "rows" and "columns" specify the number of rows and columns of the array
respectively. The ordering of the set is row-major. The indices of the first element in the array are both either
“0” or “1” depending on the language binding.

11.2.8.2 Coordinate2D_Array

This data type specifies an array of Coordinate2D objects.

Coordinate2D Array ::= {
length Integer Positive;
coordinate2D array Object Reference[length];

}
11.2.8.3 Coordinate3D_Array

This data type specifies an array of Coordinate3D objects.

Coordinate3D Array ::= {
length Integer Positive;
coordinate3D array Object Reference[length];

}
11.2.8.4 Coordinate_Valid_Region_Array

This data type specifies an array of Coordinate Valid Region variables.

Coordinate Valid Region Array ::= {
length Integer Positive;

226 © ISO/IEC 2009 — All rights reserved

https://standards.iteh.ai/catalog/standards/iso/bddbeeea-ba53-43e2-b92a-05032bec66f1/iso-iec-18026-2009

ISO/IEC 18026:2009(E)

valid region array Coordinate Valid Region[length];

}
11.2.8.5 Direction_Array

This data type specifies an array of Direction objects.

Direction Array ::= {
length Integer Positive;
direction array Object Reference[length];

}
11.2.8.6 Vector_3D

This data type specifies an array of three Long Float variables representing a vector in 3D Euclidean
space.

Vector 3D ::= Long Float[3]

11.2.8.7 Matrix_3x3

This data type specifies a two-dimensional square array of nine Long Float variables representing a 3x3
matrix (see 10.4.6).

Matrix 3x3 ::= Long Float[3, 3]

11.2.8.8 Matrix_4x4

This data type specifies a two-dimensional square array of 16 Long Float variables representing a 4x4
matrix (see 10.4.6).

Matrix 4x4 ::= Long Float[4, 4]
11.2.9 Structured data types

11.2.9.1 Introduction

Non-object data types created as records whose elements are basic non-object data types are called
structured non-object data types. This International Standard specifies a set of structured non-object data
types to collect the (non-ORM) parameters needed to specify an SRF by means of an SRF template, and to
collect parameters needed to specify an ORM transformation.

The elements of structured data types that represent lengths shall be evaluated in the units of metre, and the
elements that represent angles shall be evaluated in the units of radian.

The following notation is used for defining the variant record data structures for non-object types:
<Variant_Record_Data_Type> ::= (<Selector_Name> <Selection_Data_Type>)

<Variable_Name> <Variable_Data_Type>
<Variable_Name> <Variable_Data_Type>

<Selection_Name>: <Variable_Name> <Variable_Data_Type>;
<Selection_Name>: <Variable_Name> <Variable_Data_Type>;

227 © ISO/IEC 2009 — All rights reserved

https://standards.iteh.ai/catalog/standards/iso/bddbeeea-ba53-43e2-b92a-05032bec66f1/iso-iec-18026-2009

ISO/IEC 18026:2009(E)

!

Where:

<Variant_Record_Data_Type>: The variant record data type that is being defined.

<Selector_Name>: The name of the selector

<Selector_Data_Type>: The selection data type used to select the content of the variant record.

<Variable_Name>: The name of a record element.

<Variable_Data_Type>: The data type of a record element. Data type “<empty>" signifies the
element is not present in the record.

<Selection_Name>: A selection data type enumerant for which a record element applies.

{: The body of the variant record.

[I: The variant part of the variant record.

11.2.9.2 SRFT parameters

11.2.9.2.1 EC_Parameters

This non-object data type specifies the parameters that correspond to SRFT EQUIDISTANT CYLINDRICAL.

EC Parameters ::= {
origin longitude Long Float;
central scale Long Float;
false easting Long Float;
false northing Long Float;

11.2.9.2.2 LCC_Parameters

This non-object data type specifies the parameters that correspond to SRFT
LAMBERT CONFORMAL_CONIC.

LCC Parameters ::= {
origin longitude Long Float;
origin latitude Long Float;
latitudel Long Float;
latitude? Long Float;
false easting Long Float;
false northing Long Float;

}

11.2.9.2.3 LSR_2D_Parameters

This non-object data type specifies the parameters that correspond to SRFT
LOCAL_SPACE_RECTANGULAR 2D.

LSR_2D Parameters ::= {
forward direction Axis Direction;

}
11.2.9.2.4 LSR_3D_Parameters

This non-object data type specifies the parameters that correspond to SRFT
LOCAL _SPACE_RECTANGULAR_ 3D.

LSR_3D Parameters ::= {

228 © ISO/IEC 2009 — All rights reserved

https://standards.iteh.ai/catalog/standards/iso/bddbeeea-ba53-43e2-b92a-05032bec66f1/iso-iec-18026-2009

forward direction
up direction

}

11.2.9.2.5 Local_Tangent_Parameters

This non-object data type

specifies the

Axis Direction;

Axis Direction;

parameters

LOCAL_TANGENT_ SPACE AZIMUTHAL_SPHERICAL, and

SRFT LOCAL_TANGENT_ SPACE_CYLINDRICAL.

Local Tangent Parameters ::

geodetic longitude
geodetic latitude
azimuth

height offset

11.2.9.2.6 LTSE_Parameters

This non-object data type

specifies the
LOCAL TANGENT SPACE EUCLIDEAN.

LTSE Parameters ::={
geodetic longitude
geodetic latitude
azimuth
x false origin
y false origin
height offset

}

11.2.9.2.7 LCE_3D_Parameters

This non-object data type
LOCOCENTRIC_EUCLIDEAN 3D.

LCE 3D Parameters ::= {
lococentre
primary axis
secondary axis

}
11.2.9.2.8 M_Parameters

specifies the

Long Float;
Long Float;
Long Float;
Long Float;

parameters

Long Float;
Long Float;
Long Float;
Long Float;
Long Float;
Long Float;

parameters

Vector 3D;
Vector 3D;
Vector 3D;

ISO/IEC 18026:2009(E)

that correspond to SRFT

that correspond to SRFT

that correspond to SRFT

This non-object data type specifies the parameters that correspond to SRFT MERCATOR.

M Parameters ::= {
origin longitude
central scale
false easting
false northing

}

Long Float;
Long Float;
Long Float;
Long Float;

11.2.9.2.9 Oblique_Mercator_Parameters

This non-object data type specifies the parameters

OBLIQUE MERCATOR_SPHERICAL.

229

that correspond to SRFT

© ISO/IEC 2009 — All rights reserved

https://standards.iteh.ai/catalog/standards/iso/bddbeeea-ba53-43e2-b92a-05032bec66f1/iso-iec-18026-2009

ISO/IEC 18026:2009(E)

Oblique Mercator Parameters ::= {

longitudel Long Float;
latitudel Long Float;
longitude?2 Long Float;
latitude2 Long Float;
central scale Long Float;
false easting Long Float;
false northing Long Float;

11.2.9.2.10 PS_Parameters

This non-object data type specifies the parameters that correspond to SRFT POLAR_STEREOGRAPHIC.

PS Parameters ::= {
polar aspect Polar Aspect;
origin longitude Long Float;
central scale Long Float;
false easting Long Float;
false northing Long Float;

11.2.9.2.11 SRFS_Code_Info

This variant Record Data Type specifies an arbitrary SRES Code with its associated SRFS member
code. The record element SRESM unspecified shall be set to zero (unspecified) when the selector value
iS SRES_UNDEFINED.

SRFS Code Info ::= (srfs code SRES Code)
{

[
SRFS UNSPECIFIED:

SRFSM unspecified Integer;
SRFS ALABAMA SPCS:
SRFSM alabama spcs SRFSM Alabama SPCS Code;

SRFS _GTRS GLOBAL COORDINATE SYSTEM:
SRFSM gtrs global coordinate system
SRFSM _GTRS Global Coordinate System Code;
SRF'S _JAPAN RECTANGULAR PLANE CS:
SRFSM japan rectangular plane cs
SRFSM Japan Rectangular Plane CS Code;
SRFS LAMBERT NTF:
SRFSM lambert ntf SRFSM Lambert NTF Code;
SRFS UNIVERSAL POLAR STEREOGRAPHIC:
SRFSM universal polar stereographic
SRFSM Universal Polar Stereographic Code;
SRFS UNIVERSAL TRANSVERSE MERCATOR:
SRFSM universal transverse mercator
B B a SRFSM Universal Transverse Mercator Code;
SRES WISCONSIN SPCS:
SRFSM wisconsin_spcs SRFSM Wisconsin SPCS Code;

230 © ISO/IEC 2009 - Al rights reserved

https://standards.iteh.ai/catalog/standards/iso/bddbeeea-ba53-43e2-b92a-05032bec66f1/iso-iec-18026-2009

ISO/IEC 18026:2009(E)

11.2.9.2.12 TM_Parameters

This non-object data type specifies the parameters that correspond to SRFT TRANSVERSE _MERCATOR.

TM Parameters ::= {
origin longitude Long Float;
origin latitude Long Float;
central scale Long Float;
false easting Long Float;
false northing Long Float;

11.2.9.3 ORM transformation parameters

11.2.9.3.1 ORM_Transformation_2D_Parameters

This non-object data type represents a 2D ORM four-parameter transformation as specified in 7.3.3.

ORM Transformation 2D Parameters ::= {
delta x Long Float;
delta y Long Float;
omega Long Float;
delta s Long Float;

}

The valid range in radians for values of omega is (-2xn, 27). The valid range for delta_s is greater than -1.

11.2.9.3.2 ORM_Transformation_3D_Parameters

This non-object data type represents a 3D ORM seven-parameter transformation as specified in 7.3.2.

ORM Transformation 3D Parameters ::= ({
delta x Long Float;
delta y Long Float;
delta =z Long Float;
omega 1 Long Float;
omega_ 2 Long Float;
omega_ 3 Long Float;
delta s Long Float;

}

The valid range in radians for values omega 1, omega 2, and omega_ 3 is (-2r, 2n). The valid range for
delta_s is greater than -1.

11.3 Object classes

11.3.1 Introduction

SRF objects specify methods that implement the spatial operations specified in Clause 10. To aid in
specification, most of the functionality of the API is defined using a class hierarchy with each abstract class
providing the specification of those methods that are common to each of its subclasses. The remaining
functionality is provided in concrete class and function specifications. The implementation of abstract classes
is not required.

231 © ISO/IEC 2009 — All rights reserved

https://standards.iteh.ai/catalog/standards/iso/bddbeeea-ba53-43e2-b92a-05032bec66f1/iso-iec-18026-2009

ISO/IEC 18026:2009(E)

The functionality of the methods are specified in the class specification tables (see 11.3.2) that provide the
method name, the semantics, inputs and outputs of the method, and the error conditions of the method. These
methods manipulate internal data (object state) and any input parameters passed in. The success condition is
a nominal behaviour of all methods and is not listed within the error conditions element. The success condition
is associated with Status Code SUCCESS.

EXAMPLE 1 In Table 11.13, the phrase “this SRF” refers to the internal state of an instance of a concrete class
subclassed (directly or indirectly) from the abstract class specified in the table. In particular, the abstract method
GetORMCode “Outputs the ORM Code and the RT Code of this SRF”, and shows “Inputs: none”.

Language bindings may add additional error conditions and related binding-specific mechanisms including the
passing of inputs and outputs, and the presentation of method status. Language bindings shall specify these
mechanisms, since this International Standard does not restrict such mechanisms. Under an error condition,
output values are undefined. When several error conditions apply to a method invocation, the first error
condition detected by an implementation shall be presented as the method status. The error conditions
applicable to a method invocation are the common error conditions specified in 11.3.2 and the additional error
conditions specified in the class specification table for the method and any language-binding specific error
conditions applicable to the method.

A language binding mechanism for presentation of method status shall support the association of a unique
error Status Code (11.2.7.11)

EXAMPLE 2 If a language binding supports exception handling and if a language binding uses that mechanism to
present method failure, then an exception object method that returns the corresponding status Code would satisfy this
requirement.

11.3.2 Class specification format

Class data types are specified in tables in Table 11.5 through Table 11.44 with the following elements:

Table 11.5 — Class specification elements

Element Definition

Class The name of the object class.

Description The corresponding SRM concept.

The specification of inherited functionality listing the superclasses of the
class in hierarchical order. Each superclass name is followed by a list of

Superclass(es) the methods it specifies. The method list excludes methods that are

overridden.
Method or
Abstract method or The name of the method.
Private method
Semantics The specification of the method functionality.

The specification(s) of the method input parameters, or "none". The state
of the invoking object is implicitly an input and is not additionally listed in
Inputs this element. The Create method of an object class is an exception. The
Create method of an object class depends only on its explicit input
parameters.

232 © ISO/IEC 2009 — All rights reserved

https://standards.iteh.ai/catalog/standards/iso/bddbeeea-ba53-43e2-b92a-05032bec66f1/iso-iec-18026-2009

