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5 Abstract coordinate systems 
5.1 Introduction 
An abstract coordinate system is a means of identifying positions in position-space by coordinate n-tuples. An 
abstract coordinate system is completely defined in terms of the mathematical structure of position-space. In 
this International Standard the term “coordinate system”, if not otherwise qualified, is defined to mean 
“abstract coordinate system.” Each coordinate system has a coordinate system type (see 5.4). Other 
coordinate system related concepts defined in this clause include coordinate-component surfaces and 
coordinate-component curves (see 5.5), linearity and other properties (see 5.6), and localization (see 5.7). 
Map projections and augmented map projections are defined and treated as special cases of the general 
abstract coordinate system concept (see 5.8). Standardized abstract coordinate systems are specified in 5.9. 
In Clause 6 a temporal coordinate system is defined as a means of identifying events in the time continuum by 
coordinate 1-tuples using an abstract coordinate system of coordinate system type 1D. In Clause 8 a spatial 
coordinate system is defined as an abstract coordinate system suitably combined with a normal embedding 
(see Clause 7) as a means of identifying points in object-space by coordinate n-tuples. 

5.2 Preliminaries 
This International Standard takes a functional approach to the construction of coordinate systems. Annex A 
provides a concise summary of mathematical concepts and specifies the notational conventions used in this 
International Standard. In particular, Annex A defines the terms interior, one-to-one, smooth, smooth surface, 
smooth curve, orientation-preserving, and connected. The concept of Rn as a vector space, the point-set 
topology of Rn, and the theory of real-valued functions on Rn are all assumed. Algebraic and analytic 
geometry, including the concepts of point, line, and plane, are also assumed. Together with such common 
concepts, a newly introduced concept replete will be used. A set D is replete if all points in D belong to the 
closure of the interior of D (see Annex A). A replete set is a generalization of an open set that allows the 
inclusion of boundary points. Boundary points are important in the definitions of certain coordinate systems.  

5.3 Abstract CS 
An abstract Coordinate System (CS) is a means of identifying a set of positions in an abstract Euclidean 
space that shall be comprised of: 

a) a CS domain, 
b) a generating function, and 
c) a CS range, 

where: 
a) The CS domain shall be a connected replete domain in the Euclidean space of n-tuples (1 ≤ n ≤ m), 

called the coordinate-space. 
b) The generating function shall be a one-to-one, smooth, orientation-preserving function from the CS 

domain onto the CS range. 
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c) The CS range shall be a set of positions in a Euclidean space of dimension m (n ≤ m ≤ 3), called the 
position-space. When n = 2 and m = 3, the CS range shall be a subset of a smooth surface5. When 
n = 1 and m = 2 or 3, the CS range shall be a subset of an implicitly specified smooth curve6. 

An element of the CS domain shall be called a coordinate7. The kth-component of a coordinate n-tuple 
(1 ≤ k ≤ n) may be called the kth coordinate-component. Coordinate-component8 is the collective term for any 
kth coordinate-component. 
An element of the CS range shall be called a position. The coordinate of a position p shall be the unique 
coordinate whose generating function value is p. 
The generating function may be parameterized. The generating function parameters (if any) shall be called the 
CS parameters. 
The inverse of the generating function shall be called the inverse generating function. The inverse generating 
function is one-to-one and is smooth and orientation-preserving in the interior of its domain, except at points in 
the image of the CS domain boundary points where it may be discontinuous. A CS may equivalently be 
defined by specifying the inverse generating function when the CS domain is an open set. 
NOTE 1 The generating function of a CS is often specified by an algebraic and/or trigonometric description of a 
geometric relationship (see 5.3 Example). There are also CSs that do not have geometric derivations. The Mercator map 
projection (see Table 5.18) is specified to satisfy a functional requirement of conformality (see 5.8.3.2) rather than by a 
geometric construction. 

EXAMPLE   Polar CS: Considering the polar geometry depicted in Figure 5.1, define a generating function F as: 
( ,  )  ( ,  )x yθρ =F  

where: 
cos( ),  and sin( ).x yρ θ ρ θ= =  

The CS domain of F in coordinate-space is 2{( , ) in | 0 ,  0 2 } {(0,0)}ρ θ ρ θ< ≤ < π ∪R . 
The CS range of F in position-space is R2. 
This generating function is illustrated in Figure 5.2. The grey boxes with lighter grey edges in this figure represent the fact 
that the range in position-space extends indefinitely, and that the domain in coordinate-space extends indefinitely along 
the ρ-axis. The dotted grey edges indicate an open boundary. This CS range, CS domain, and generating function define 
an abstract CS representing polar coordinates as defined in mathematics [EDM, “Coordinates”]. The normative definition 
of the polar CS may be found in Table 5.33. 

                                                      
5 The generating function properties and the implicit function theorem together imply that for each point in the interior of 
the CS domain, there is an open neighbourhood of the point whose image under the generating function lies in a smooth 
surface. This requirement specifies that there exists one smooth surface for all of the points in the CS domain. This 
requirement is specified to exclude mathematically pathological cases. 
6 The generating function properties and the implicit function theorem together imply that for each point in the interior of 
the CS domain, there is an open neighbourhood of the point whose image under the generating function lies in a smooth 
curve. This requirement specifies that there exists one implicitly-defined smooth curve for all the points in the CS domain. 
This requirement is specified to exclude mathematically pathological cases. 
7 The ISO 19111 term for this concept is “coordinate tuple”. 
8 The ISO 19111 term for this concept is “coordinate”. 
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Figure 5.1 — Polar CS geometry 

 

Figure 5.2 — The polar CS generating function 
NOTE 2   In the special case where 1) the CS domain and CS range are both Rn and 2) the function is the identity 
function, this approach to defining coordinate systems reduces to the usual definition of the Euclidean coordinate system 
on Rn where each point is identified by an n-tuple of real numbers [EDM] (see Table 5.8, Table 5.29 and Table 5.35). 

NOTE 3   The CS generating function has an inverse because it is one-to-one, but the inverse may be discontinuous at 
points in the image of CS domain boundary points. This is the case for the positive x-axis in the example above. 

5.4 CS types 
The coordinate-space and position-space dimensions characterize an abstract CS by CS type as defined in 
Table 5.1. 

Table 5.1 — CS types 

CS type Dimension of 
coordinate-space 

Dimension of 
position-space 

3D 3 3 

position-space coordinate-space

(ρ, θ) 

y = ρ sin(θ ) 

x = ρ cos(θ ) 0 

2π 

ρ -axis 

p 

F 

x-axis 

y-axis 

θ -axis 

y-axis 

x-axis 

ρ cosθ 

ρ s
in
θ ρ 

θ 
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CS type Dimension of 
coordinate-space 

Dimension of 
position-space 

surface  2 3 
curve9  1 3 
2D 2 2 
plane curve9 1 2 
1D 1 1 

 
A CS of CS type 3D may be called a 3D CS, a CS of CS type surface may be called a surface CS, and a CS 
of CS type 2D may be called a 2D CS. 

5.5 Coordinate surfaces, induced surface CSs, and coordinate curves 

5.5.1 Introduction 
The generating function of a 3D CS is a function of the three coordinate-components of a coordinate 3-tuple. If 
one of the coordinate-components is held fixed (to a constant value), then the generating function thus 
restricted to two variables may be viewed as a surface CS generating function (with a surface CS range). If 
two of the three coordinate-components are held fixed, the generating function restricted to one variable may 
be viewed as a curve CS generating function (with curve CS range). These observations motivate the 
definitions of coordinate-component surfaces and curves. The coordinate-component surface and coordinate-
component curve concepts are required to specify induced CS relationships, for the definition of special 
coordinate curves parallel and meridian, and the definition of CS handedness (see also 10.5).  

5.5.2 Coordinate-component surfaces and induced surface CSs 
If F is the generating function of a 3D CS, and u = (u0, v0, w0) is in the interior of the CS domain D, then three 
surface CS generating functions at u are defined by: 
  1 0( , ) ( , , )v w u v w=S F , 
  2 0( , ) ( , , )u w u v w=S F , and 
  3 0( , ) ( , , )u v u v w=S F . 
The CS domain for S1 is the connected component of ( ){ }2

0,  in ( , , ) in v w u v w DR which contains (v0, w0).  
The CS domain for S2 is the connected component of ( ){ }2

0,  in ( , , ) in u w u v w DR which contains (u0, w0). 
The CS domain for S3 is the connected component of ( ){ }2

0,  in ( , , ) in u v u v w DR which contains (u0, v0). 

Each of these surface CSs shall be called, respectively, the 1st, 2nd, and 3rd surface CS induced by F at u. 
The CS ranges of these surface CSs are, respectively, the 1st, 2nd, and 3rd coordinate-component surface at u. 

EXAMPLE 1 Coordinate-component surface: The geodetic 3D CS with generating function ( ) ( )h x y zλ ϕ =, , , ,F is 
specified in Table 5.14 with CS parameters a and b. The 3rd coordinate-component surface at ( )λ ϕ= 0 0, ,0u is the surface 
of the oblate ellipsoid with major semi-axis a and minor semi-axis b. 
                                                      
9 The ISO 19111 concept of a linear reference system is a specialization of the curve CS and plane curve CS concepts. 
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EXAMPLE 2 Induced surface CS: The surface geodetic CS is specified in Table 5.24. Its CS domain, CS range and 
generating function are identical to the 3rd surface CS induced by the geodetic 3D generating function at ( )0,0,0=u . If h 
is replaced by 0 in the formulae for the generating and inverse generating functions of the geodetic 3D CS, they reduce to 
the surface geodetic formulae. 

5.5.3 Coordinate-component curves 
Coordinate-component curves are defined for CSs of CS type 3D, CS type surface, and CS type 2D. 
The CS type 3D case: 
If F is the generating function of a CS of CS type 3D, D is the CS domain, and u = (u0, v0, w0) is in the interior 
of D, then the 1st, 2nd, and 3rd coordinate-component curves at u are parametrically specified, respectively, by 
the following smooth functions: 
  ( ) ( )1 0 0, ,u u v w=C F , 
  ( ) ( )2 0 0, ,v u v w=C F , and 
  ( ) ( )3 0 0, ,w u v w=C F . 
The domain for C1 is the connected component of { }0 0 in ( , , ) in u u v w DR which contains u0.  
The domain for C2 is the connected component of { }0 0 in ( , , ) in v u v w DR which contains v0. 
The domain for C3 is the connected component of { }0 0 in ( , , ) in w u v w DR which contains w0. 

NOTE   The intersection of two coordinate surfaces at u is (the locus of) a coordinate-component curve: 
1 2 3 2 1 3 3 1 2, , .C S S C S S C S S= ∩ = ∩ = ∩  

The CS type surface and CS type 2D cases: 
If F is the generating function of a CS of CS type surface or CS type 2D, D is the CS domain, and u = (u0, v0) 
is in the interior of D, then the 1st and 2nd coordinate-component curves at u are parametrically specified, 
respectively, by the following smooth functions: 
  ( ) ( )1 0,u u v=C F , and 
  ( ) ( )2 0,v u v=C F . 
The domain for C1 is the connected component of { }0 in ( , ) in u u v DR which contains u0.  
The domain for C2 is the connected component of { }0 in ( , ) in v u v DR which contains v0. 

EXAMPLE   If 0 0( , ) ρ θ=u is in the interior of the CS domain of the polar CS generating function F of the 5.3 
Example, then the first coordinate-component curve is ( ) ( ) ( )1 0 0 0, cos , sinθ ρ θ ρ θ ρ θ= =C F , and the 2nd coordinate-
component curve is ( ) ( ) ( )2 0 0 0, cos , sinθ ρ θ ρ θ ρ θ= =C F . 

If F is the generating function for the geodetic 3D CS or the surface geodetic CS, and ( )λ ϕ= 0 0, ,0u in the 3D 
case or ( )λ ϕ= 0 0,u in the surface case, then (see Figure 5.3): 

a) the 1st coordinate-component curve at u shall be called the parallel at u, and 
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b) the 2nd coordinate-component curve at u shall be called the meridian10 at u. 

The meridian at ( ) ( )0,0,0  or 0,0=u shall be called the prime meridian11. 

The parallel at ( ) ( )0,0,0  or 0,0=u shall be called the equator. 

 

(λ,ϕ, h) 

equator 

x-axis 

z-axis 

y-axis 

b 
meridian at (λ,ϕ, 0) 

x 

y 
z 

a 
λ 

ϕ 

 h 

prime  
meridian 

(0, 0, 0) 

3rd coordinate surface 
h = 0 

(λ,ϕ, 0) 

parallel at (λ,ϕ, 0) 

 

Figure 5.3 — Geodetic 3D CS geometry, and coordinate-component surface and curves 

5.6 CS properties 

5.6.1 Linearity 
A CS with generating function F is a linear CS if F is an affine function. The CS domain of a linear coordinate 
system is all of the coordinate-space nR . 
A curvilinear CS is a non-linear CS. 
EXAMPLE   The polar CS of 5.3 EXAMPLE is a curvilinear CS of CS type 2D. 

                                                      
10 ISO 19111 defines the term “meridian” as the intersection between an ellipsoid and a plane containing the semi-minor 
axis of the ellipsoid. 
11 ISO 19111 defines the term “prime meridian” as the meridian from which the longitudes of other meridians are 
quantified. In Clause 7, most, but not all, oblate ellipsoid Earth object reference models associate the Greenwich meridian 
with the prime meridian (see 7.4.5). 
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5.6.2 Orthogonality 
A CS of CS type 3D, CS type surface, or CS type 2D is orthogonal if the angle between any two coordinate-
component curves at u is a right angle when u is any coordinate in the interior of the CS domain of the 
generating function. 
EXAMPLE   The polar CS of 5.3 EXAMPLE is a orthogonal CS of CS type 2D. 

5.6.3 Linear CS properties: Cartesian, and orthonormal 
In a linear CS, the kth coordinate-component curve is a line. The kth coordinate-component curve at the origin 0 
of a linear CS is the kth-axis. 
In a linear CS, if the angles between coordinate-component curves at the origin 0 are (pair-wise) right angles, 
then that is the case at all points. In particular, a linear CS is orthogonal12 if the axes are orthogonal. 

In some publications a Cartesian CS is defined the same way as an orthogonal linear CS13. This International 
Standard, however, defines this concept differently. A linear CS with generating function F is a Cartesian CS if 

( ) ( ) 1, 1,...,i i n− = =F e F 0  (i.e., the axis unit points are all one unit distant from the origin F(0)). 

An orthonormal CS is a linear CS that is both orthogonal and Cartesian. 
A CS of CS type 3D with generating function F is orientation-preserving if the Jacobian determinant of F is 
positive. 
EXAMPLE   The Lococentric Euclidean 3D CS specified in Table 5.9 is an orientation-preserving orthonormal CS. 

5.6.4 CS right-handedness and coordinate-component ordering 

Given a CS of CS type 3D and a coordinate ( )0 0 0, ,u v w=c  in the interior of the CS domain, the coordinate-
component curves at p determine an ordered set of three tangent vectors: 

1
1

2
2

3
3

0

0

0

,

,  and

.

u u

v v

w w

d
du

d
dv

d
dw

=

=

=

 =   
 =   
 =   

Ct

Ct

Ct

 

An orthogonal CS of CS type 3D is a right-handed CS if for some coordinate c  in the interior of the CS 
domain, the ordered set of tangent vectors t1, t2, and t3 form a right-handed coordinate system as defined in 
IS0 80000-2. The right-handed CS property is determined, in part, by the order of the coordinate-components 
in the coordinate 3-tuple. The order of the coordinate-components in the specification of an orthogonal CS of 
CS type 3D shall be restricted to an ordering that ensures a right-handed CS. This restriction is required for 
uniform treatment of directions in an SRF (see 10.5). 
                                                      
12 Some publications use “rectangular” to denote an orthogonal linear CS, and “oblique” to denote a non-orthogonal linear 
CS. 
13 ISO 19111 defines “Cartesian coordinate system” as a coordinate system that gives the position of points relative to n 
mutually-perpendicular axes.  
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The coordinate-component ordering in the specification of a surface CS that is induced on a coordinate-
component surface of a 3D CS, shall use the coordinate-component order of the inducing 3D CS. 

EXAMPLE 1 The geodetic 3D CS (Table 5.14) coordinate-component ordering ( )hλ ϕ, ,  ensures that the CS is right-
handed. A similar ordering for the planetodetic 3D CS (Table 5.15) is not right-handed because the tangent to planetodetic 
longitude points opposite to the direction of the tangent to geodetic longitude. Instead, the coordinate-component ordering 
( )hϕ λ, ,  is specified to satisfy the right-handed CS requirement.  

EXAMPLE 2 The surface planetodetic geodetic CS (Table 5.25) coordinate-component ordering ( )ϕ λ,  is determined 
by the coordinate-component ordering ( )hϕ λ, ,  of the planetodetic 3D CS (Table 5.15).  

5.7 CS localization 
In some applications of a CS in the context of a spatial reference frame, it is necessary to consider a modified 
version of the CS that has been translated to a local origin and/or has been rotated (see "Lococentric" spatial 
reference frame variants in Clause 8). To treat these modifications in a uniform manner, the generating 
function of a CS that has been translated to a local origin and/or has been rotated is related to the generating 
function of the original CS by means of a localization operator. This uniform method, defined below, of 
specifying the variant CS by composing the original CS generating function with a localization operator shall 
be called CS localization. 
Three parameterized operators, called localization operators, that operate on or between position-spaces are 
defined in Table 5.2. The inverses of these operators are defined in Table 5.3. 

Table 5.2 — Localization operators 
Localization 
operator Domain Range Localization parameters Operator definition 

L3D  3R  3R  q, r, s, in 3R  
r and s are orthonormal 

( )3D , , ,
where  .

x y z x y z= + + +

= ×

L q r s t
t r s

 

SurfaceL  2R  3R  q, r, s, in 3R  
r and s are orthonormal 

( )Surface ,x y x y= + +L q r s  

2DL  2R  2R  q, r, s, in 2R  
r and s are orthonormal 

( )2D ,x y x y= + +L q r s  

 

Table 5.3 — Localization inverse operators 
Localization operator Inverse operator definition 

3DL  ( ) ( )( ) ( )( ) ( )( )1
3D 1 2 3- - -
− = • + • + •L p p q r e p q s e p q t e  

SurfaceL  ( ) ( )( ) ( )( )1
Surface 1 2- -
− = • + •L p p q r e p q s e  

2DL  ( ) ( )( ) ( )( )1
2D 1 2- -
− = • + •L p p q r e p q s e  

 
There are several forms of CS localization depending on CS type and localization operator. A 3D or surface 
CS with generating function F is localized by composing F with the 3DL  localization operator. The localized CS 
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is of the same CS type (CS type 3D or CS type surface, respectively). Its generating function is L 3D≡F L F�  
and has the same CS domain as F. 

There are two localization operators for a 2D CS. One uses localization parameters in 3R  and produces a 
surface CS. The other uses localization parameters in 2R  and produces a 2D CS. 

a) A 2D CS with generating function F is localized by composing F with the SurfaceL  localization operator. 
The localized CS is a surface CS. Its generating function is L Surface≡F L F�  and has the same CS 
domain as F. 

b) A 2D CS with generating function F is localized by composing F with the L2D  localization operator. 
The localized CS is a 2D CS. Its generating function is L 2D≡F L F�  and has the same CS domain as 
F. 

The localization operator parameter q shall be called the lococentre. A localized CS may be called a 
lococentric CS. 
NOTE   CS localization preserves the following CS properties: linear/curvilinear, orthogonal, Cartesian, and 
orthonormal. 

The relationship between a CS type and its localized version(s) is summarized in Table 5.4. 

Table 5.4 — Localized CS type relationships 
CS type Localization operator Lococentric CS type 
3D 3DL  3D 
Surface 3DL  

SurfaceL  
Surface 

2D 
2DL  2D 

 

5.8 Map projection coordinate systems 

5.8.1 Map projections 
Map projections are 2D models of a 3D curved surface. In this International Standard, map projections are 
limited to the surface of an oblate ellipsoid. A map projection (MP) is comprised of 

a) an MP domain in the surface of an oblate ellipsoid, 
b) a generating projection, and 
c) an MP range in 2D coordinate-space, 

where: 
a) the MP domain is a connected subset of the surface of the oblate ellipsoid, 
b) the MP range is a connected replete set, and 
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c) the generating projection is one-to-one from the MP domain in the oblate ellipsoid onto its MP range 
and its inverse function is smooth and orientation-preserving in the MP range interior. 

NOTE 1 This definition may be generalized to any ellipsoid including tri-axial ellipsoids, but this International Standard 
only addresses map projections for oblate ellipsoids. 

NOTE 2 The domain of a map projection is always a proper subset of the oblate ellipsoid surface. In particular, the 
domain of the Mercator map projection (see Table 5.18) omits the pole points. 

The generating projection P is specified in terms of surface geodetic CS coordinates (see Table 5.24). The 
component functions 1P  and 2P  of the generating projection P shall be called the mapping equations: 
  u vλ ϕ =( ,  )  ( ,  )P  
where: 

  u P
v P

λ ϕ
λ ϕ

=

=

1

2

( ,  ), and 
( ,  ).  

The MP range coordinate-components u and v shall be called easting and northing, respectively. The positive 
direction of the u-axis (the easting axis) shall be called map-east. The positive direction of the v-axis (the 
northing axis) shall be called map-north. 

The inverse mapping equations are the component functions 1Q  and 2Q  of the inverse generating 
projection 1−

=Q P : 

  Q u v
Q u v

λ
ϕ
=

=

1

2

( , ) 
( , )  

5.8.2 Map projection as a surface CS 
If the inverse generating projection of a map projection Q is composed with the surface geodetic CS 
generating function GDG , the resulting function MP GD=G G Q�  is the generating function of a surface CS (see 
Figure 5.4). The CS domain is the MP range. In this International Standard, a map projection CS shall be a 
surface CS for which the generating function is implicitly specified in terms of the mapping equations of a map 
projection. 
In some cases, the surface geodetic coordinates with coordinate-component ϕ = ±π 2  are not in the MP 
domain of P nor are they in the range of Q. However, if the composite function -1 -1

MP GD=G P G�  is continuous at 
the pole points ( )0,0, b± , then MPG  and -1

MPG  shall be extended by continuity to include the pole points in the 
CS range.  
NOTE   The CS generating function MP GD= �G G Q  is not to be confused with the generating projection P. 
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Figure 5.4 — The generating function of a map projection 

5.8.3 Map projection geometry 

5.8.3.1 Introduction 

In general, the Euclidean geometry that a surface CS 2D coordinate-space inherits from 2R  has no direct 
significance with respect to the geometry of position-space. In particular, the Euclidean distance between a 
pair of surface geodetic coordinates has no obvious meaning in position-space. In contrast, map projections 
are specifically designed so that coordinate-space geometry will model one or more geometric aspects of the 
corresponding oblate ellipsoid surface in position-space.  
The map projection CSs specified in this International Standard are designed so that one or more geometric 
aspects of the MP domain in the oblate ellipsoid surface are approximated or modelled by the corresponding 
aspect in coordinate-space. The length of the line segment between two map coordinates is related to the 
length of the corresponding surface curve. Similarly, one or more of directions, areas, the angles between two 
intersecting curves, and shapes may be related approximately or exactly to the corresponding geometric 
aspect on the oblate ellipsoid surface.  
The extent to which these aspects are or are not closely related is an indication of distortion. Some map 
projection CSs are designed to eliminate distortion for one geometric aspect (such as angles or area). Others 
are designed to reduce distortion for several geometric aspects. In general, distortion tends to increase with 
the size of the oblate ellipsoid MP domain relative to the total oblate ellipsoid surface area. Conversely, 
distortion errors may be reduced by restricting the size of the MP domain. Map projections specified in this 
International Standard in the context of a spatial reference frame may have areas of definition beyond which 
the projection should not be used for some application domains due to unacceptable distortion14. 

5.8.3.2 Conformal map projections 
A conformal map projection preserves angles. For such map projections, when two surface curves on an 
oblate ellipsoid meet at the angle α, the image of those curves in the map coordinate-space meet at the same 
angle α [THOM]. 
                                                      
14 It is a consequence of the Theorema Egregium of Gauss that no map projection CS can eliminate all distortion. 
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In addition, [THOM] contains a derivation based on the theory of complex variables to obtain conditions that 
specify when a projection is conformal. The map projections specified in Table 5.18 through Table 5.22 are 
conformal. The equidistant cylindrical MP specified in Table 5.23 is not conformal. 
NOTE   The conformal property is local. A conformal map projection preserves angles at a point, but does not 
necessarily preserve shape or area. In particular, a large projected triangle may appear distorted under a conformal map 
projection. 

5.8.3.3 Point distortion 
One indicator of map projection length distortion is the ratio of lengths between an infinitesimal line segment in 
coordinate-space and the corresponding curve in position-space. Given a point in the interior of the MP range 
with surface geodetic coordinate (λ,ϕ) the directional point distortion15 at (λ,ϕ) with respect to a smooth 
surface curve passing through the point is the ratio of the differential distance in coordinate-space to the 
differential arc length at (λ,ϕ) along the curve as determined by the mapping equations.  
The latitudinal point distortion at (λ,ϕ), denoted j(λ,ϕ), is the directional point distortion with respect to the 
meridian at (λ,ϕ). It is computed in the direction of the meridian at the point as: 

( ) ( )
( )

( ) ( )
( )

u vj R
ϕ ϕλ ϕ ϕ∆→

∂ ∂ + ∂ ∂∆
= =

∆

2 2

0
M

arc length in coordinate-space, lim arc length along a meridian  

where ( )R ϕM is the radius of curvature in the meridian as specified in Table 5.6. 

The longitudinal point distortion at (λ,ϕ), denoted k(λ,ϕ), is the directional point distortion with respect to the 
parallel at (λ,ϕ). It is computed in the direction of the parallel at the point as: 

( ) ( )
( )

( ) ( )
( ) ( )

u v
k

R
λ λλ ϕ ϕ ϕ∆→

∂ ∂ + ∂ ∂∆
= =

∆

2 2

0
N

arc length in coordinate-space, lim arc length along a parallel cos  

where ( )R ϕN is the radius of curvature in the prime vertical as specified in Table 5.6. 

If a map projection is conformal, then the directional point distortion is independent of the direction of the 
curve at the point. In particular, j(λ,ϕ) = k(λ,ϕ) for conformal map projections. 
It is common practice in cartography to convert map projection coordinate-space to a display coordinate-
space by means of a scaling factor. The scaling factor σ  shall be termed a map scale [HTDP] and a point in 
the display space shall be termed a display coordinate16. The relationship of a display coordinate (ud, vd) to a 
map coordinate (u, v) is:  

d

d

u u

v v

σ

σ

=

=
 

Map scale is commonly expressed as a ratio 1:n. 
EXAMPLE   A map scale printed on a map sheet as 1:50 000 corresponds to σ = 1/50 000. 
                                                      
15 This concept is found in the literature under a variety of names.  The term “point distortion” is introduced to avoid 
ambiguity. 
16 The distinction between a map projection coordinate and a display coordinate is not usually made explicit in the 
literature. The term “display coordinate” is introduced to avoid ambiguity.  
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For a conformal map projection, the infinitesimal ratio of display distance to arc length along a parallel is the 
point scale at (λ,ϕ) and is denoted by kscaled. The relationship between point scale and point distortion is: 

kscaled(λ,ϕ) = σ k(λ,ϕ). 
 

5.8.3.4 Geodetic azimuth and map azimuth 

The geodetic azimuth17 from a non-polar point p1 on the surface of an ellipsoid to a second point p2 on the 
surface is the angle measured clockwise from the meridian curve segment connecting p1 to the North pole to 
the geodesic containing p1 and p2 (see Figure 5.5). The range of azimuth values α  shall be α≤ < π0 2 . The 
definition and range constraints apply to points in both hemispheres. 
In a map projection CS, the map azimuth from a coordinate c1 to a coordinate c2 is defined as the angle from 
the v-axis (map-north) clockwise to the line segment connecting c1 to c2. In general, the map azimuth for a pair 
of coordinates will differ in value from the geodetic azimuth of the corresponding points on the oblate ellipsoid. 

 

Figure 5.5 — Geodetic azimuths α12 from p1 to p2 and α34 from p3 to p4 

                                                      
17 More general definitions that allow measurements of azimuth angle clockwise or counter-clockwise and from the north 
or south side of the meridian are in use. The generalization to the case for which one or more of the two points is not on 
the surface is treated in [RAPP1] and [RAPP2]. The more general definitions are not required for subsequent SRM 
concepts. 
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5.8.3.5 Convergence of the meridian 

Given a point ( )λ ϕ,  in the interior of the MP domain of a map projection, the meridian through that point is 
projected to a curve in coordinate-space that passes through the corresponding coordinate. The angle γ at the 
coordinate in the clockwise direction from the curve to the v-axis (map-north) direction shall be called the 
convergence of the meridian (COM) (see Figure 5.6).  

The relationship ( ) u vγ λ ϕ ϕ ϕ
 ∂ ∂= − ∂ ∂ , arctan2 ,  is used to derive the formulae for COM from the mapping 

equations of each of the map projections18. The COM angle is adjusted to the range γ−π < ≤ π . 

NOTE   If the map projection is conformal, then an equivalent relationship is given by: ( ) v uγ λ ϕ λ λ
∂ ∂ =  ∂ ∂ , arctan2 , . 

A typical geometry illustrating the COM at a point p is shown for the transverse Mercator map projection in 
Figure 5.6. 
 

Figure 5.6 — Convergence of the meridian 
EXAMPLE   If p2 is directly map-north of p1 (it has a larger v coordinate-component), then the map azimuth is zero, but 
the geodetic azimuth may not be zero. The geodetic azimuth is approximately the sum of the map azimuth and the COM if 
the points are sufficiently close together. 

5.8.4 Relationship to projection functions 

5.8.4.1 Projection functions 
Projection functions are defined in A.9. In some cases, the generating projection of a map projection CS is 
derived from a projection function. The derivation involves two steps. The first step is to restrict the domain of 
                                                      
18 The function arctan2 is defined in A.8.2. 
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