10 SRF operations

10.1 Introduction

This International Standard specifies operations on SRF coordinates and, in the case of 3D object-spaces, on SRF spatial directions. Underlying these operations is the similarity transformation associated with two ORMs. Similarity transformations are treated first in <u>10.3</u>. Then the general case of changing the representation of a position as a coordinate in one SRF to its representation as a coordinate in another SRF is specified in <u>10.4</u>, followed by important special cases. The specification of a spatial direction in the context of an SRF is defined, and the general case of changing the representation of a spatial direction in one SRF to its representation in another SRF is specified (<u>10.5</u>).

Euclidean distance in 2D and 3D object-space is specified in 10.6. Distance and azimuth on the surface of an oblate ellipsoid (or sphere) is specified in 10.7. Vertical offset is defined in 9.3.

10.2 Notation and terminology

An important category of spatial operations is changing spatial information represented in one SRF to spatial information represented in a second SRF. For this category of operations, the adjective "source" shall be used to refer to the first SRF, and the adjective "target" shall be used to refer to the second SRF.

The notation in <u>Table 10.1</u> is used throughout this clause.

	Notation	Description
	ORMs	Source ORM standards iteh ai)
	ORM _T	Target ORM
	ORM _R	Reference ORM for a given spatial object
	H _{SR}	Reference transformation from ORM_S to the reference ORM_R
	H _{TR}	Reference transformation from ORM_T to the reference ORM_R
	H _{ST}	Similarity transformation from the embedding of ORM_S to ORM_T
	SRFs	Source SRF based on ORM _s
	SRF_{T}	Target SRF based on ORM _T
	SRF_{L}	The local tangent frame SRF at a coordinate (See <u>10.5.2</u>)
	CSs	CS of SRF _S
	CST	CS of SRF _T
	G _S	Generating function of CS _S
	$G_{ extsf{T}}^{-1}$	Inverse generating function of CS_T
	cs	Coordinate of a spatial position in SRF _S
	c _T	Coordinate of a spatial position in SRF_T
	n _s	Direction vector in SRF _s (See $10.5.2$)
	<i>n</i> _T	Direction vector in SRF_T (See <u>10.5.2</u>)

Table 10.1 — Notation

10.3 Operations on ORMs

10.3.1 Introduction

The similarity transformations H_{ST} between source/target pairs ORM_S and ORM_T underlie the coordinate operations in <u>10.4</u>. Given a set of *n* ORMs there are *n*(*n*-1) such source and target ORM pairs. Instead of specifying the full set of similarity transformations, this International Standard reduces the requirement to specifying the reference transformation H_{SR} from each object-fixed source ORM_S to the reference ORM_R for a given object. This subclause specifies the methods of expressing a similarity transformation H_{ST} in terms of the reference transformations for the source and target ORMs. The cases of ORMs for a single object are treated in <u>10.3.2</u>. The more general cases in which ORM_S and ORM_T are ORMs for different objects are treated in <u>10.3.3</u>.

10.3.2 ORMs for a single object

If ORM_S is an object-fixed ORM, its reference transformation H_{SR} may be specified as a seven-parameter transformation in the 3D case (see <u>7.3.2</u>) and a by four-parameter transformation in the 2D case (see <u>7.3.3</u>). The general form of H_{SR} in the 3D case is given by Equation (7). The form in the 2D case is similar. As vector operations, they are in the form of a scaled invertible matrix multiplication followed by a vector addition. This form of vector operation is an invertible <u>affine</u> transformation. In the 3D case using the notation of Equation (5):

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}_{\mathsf{R}} = \boldsymbol{H}_{\mathsf{SR}} \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{\mathsf{S}} = \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix}_{\mathsf{SR}} + (1 + \Delta s_{\mathsf{SR}}) \boldsymbol{T}_{\mathsf{SR}} \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{\mathsf{S}}$$
(7)

NOTE The processes by which ORMs for the Earth are established are based on physical measurements. These measurements are subject to error and therefore introduce various types of relative distortions between ORMs. Equation (7) is based on the assumption that positions in object-space are error free and the equation includes no compensation for these distortions.

The reference transformation H_{TR} from ORM_T to ORM_R is similarly specified. An important operation is the similarity transformation H_{ST} from ORM_S to ORM_T, when neither the source nor the target is necessarily the reference ORM. The H_{ST} transformation may be expressed as the composition of H_{SR} with H_{TR}^{-1} (the inverse of H_{TR}) as in Equation (8) (see Figure 10.1):

https://standards.iteh.a/catalog/standards/iso/bddbeeea-ba53-43e2-b92a-05032bec66fl/iso-iec-18026-2009 $H_{SI} = H_{IR}^{-1} \circ H_{SR}$ (8)

Figure 10.1 — Composed transformations

The inverse operation H_{TR}^{-1} is also an affine transformation:

$$H_{TR}^{-1}\left(\begin{pmatrix}x\\y\\z\end{pmatrix}_{R}\right) = \frac{1}{(1+\Delta s_{TR})}T_{TR}^{-1}\left(\begin{pmatrix}x\\y\\z\end{pmatrix}_{R} - \begin{pmatrix}\Delta x\\\Delta y\\\Delta z\end{pmatrix}_{ST}\right)$$
$$= \left(\frac{-1}{(1+\Delta s_{TR})}T_{TR}^{-1}\begin{pmatrix}\Delta x\\\Delta y\\\Delta z\end{pmatrix}_{TR}\right) + \frac{1}{(1+\Delta s_{TR})}T_{TR}^{-1}\begin{pmatrix}x\\y\\z\end{pmatrix}_{R}$$
$$= \left(\frac{\Delta x}{\Delta y}\right)_{RT} + \frac{1}{(1+\Delta s_{TR})}T_{TR}^{-1}\begin{pmatrix}x\\y\\z\end{pmatrix}_{R}$$

Because the matrix T_{TR} is a rotation matrix, its transpose T_{TR}^{T} is also its inverse T_{TR}^{-1} . Its inverse is also the matrix T_{RT} corresponding to the reverse rotations of ORM_T with respect to ORM_R. In particular:

$$T_{\rm RT} = T_{\rm TR}^{-1} = T_{\rm TR}^{T}$$

and

$$\boldsymbol{H}_{\mathrm{TR}}^{-1}\left(\begin{pmatrix}x\\y\\z\end{pmatrix}_{\mathrm{R}}\right) = \begin{pmatrix}\Delta x\\\Delta y\\\Delta z\end{pmatrix}_{\mathrm{RT}} + \frac{1}{(1+\Delta s_{\mathrm{TR}})}\boldsymbol{T}_{\mathrm{RT}}\left(\begin{matrix}x\\y\\z\end{pmatrix}_{\mathrm{R}}\right).$$

The composite operation $H_{ST} = H_{TR}^{-1} \circ H_{SR}$ reduces to:

$$H_{ST}\begin{pmatrix} x \\ y \\ z \end{pmatrix}_{S} = H_{TR}^{-1} \circ H_{SR}\begin{pmatrix} x \\ y \\ z \end{pmatrix}_{S}$$
Standards
$$= \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix}_{ST} + \frac{(1 + \Delta s_{SR})}{(1 + \Delta s_{TR})} T_{ST} \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{S}$$
Preview

where:

ISO/IEC 18026:2009

https://standards.iteh.a $T_{sT} = T_{RT}T_{sR}$, and s/iso/bddbeeea-ba53-43e2-b92a-05032bec66f1/iso-iec-18026-2009

$$\begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix}_{ST} = \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix}_{RT} + \frac{1}{(1 + \Delta s_{TR})} T_{RT} \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix}_{SR}$$

If the rotation parameters are equal, then T_{ST} is the identity matrix, and if $\Delta s_R = \Delta s_T$, H_{ST} simplifies to a translation of the origin:

$$\boldsymbol{H}_{\mathrm{ST}}\left(\begin{pmatrix} x\\ y\\ z \end{pmatrix}_{\mathrm{S}}\right) = \begin{pmatrix} \Delta x\\ \Delta y\\ \Delta z \end{pmatrix}_{\mathrm{ST}} + \begin{pmatrix} x\\ y\\ z \end{pmatrix}_{\mathrm{S}}.$$

Equation (8) and Figure 10.1 also apply to the 2D case.

If the source ORM_S is a time-dependent ORM for a spatial object, $ORM_S(t)$ shall denote the ORM_S at time t, and $H_{SR}(t)$ shall denote the similarity transformation from the embedding of $ORM_S(t)$ to the embedding of the object-fixed reference ORM_R . If the similarity transformation $H_{SR}(t)$ can be determined, it is a time-dependent affine transformation. For a fixed value of time t_0 , Equation (8) and Figure 10.1 generalize to

(9)

ISO/IEC 18026:2009(E)

 $\boldsymbol{H}_{ST}(t_0) = \boldsymbol{H}_{TR}^{-1} \circ \boldsymbol{H}_{SR}(t_0). \text{ The generalizations to a time-dependent target ORM_T(t) are } \boldsymbol{H}_{ST}(t_0) = \boldsymbol{H}_{TR}^{-1}(t_0) \circ \boldsymbol{H}_{SR}$ and $\boldsymbol{H}_{ST}(t_0) = \boldsymbol{H}_{TR}^{-1}(t_0) \circ \boldsymbol{H}_{SR}(t_0)$ for the ORM_S static and time-dependent cases, respectively.

EXAMPLE ORM_S(*t*) is the ORM <u>EARTH_INERTIAL_J2000r0</u> at time *t*. ORM_R is the Earth reference ORM <u>WGS 1984</u>. Because ORM_S(*t*) and ORM_R share the same embedding origin, the $H_{sR}(t)$ transformation is a (rotation) matrix multiplication operation (without vector addition). The matrix coefficients for selected values of *t* account for polar motion, Earth rotation, nutation, and precession. Predicted values for these coefficients are computed and updated weekly by the International Earth Rotation Service (IERS) [IERS] (see <u>7.5.2</u>). See <u>Annex B</u> for other examples of dynamic ORM reference transformations.

10.3.3 Relating ORMs for different objects

If a spatial object **S** exists in the space of another spatial object **T**, and if ORM_R is the reference ORM for object **T**, and if the two objects are fixed with respect to each other, then H_{SR} shall denote a similarity transformation from the embedding of ORM_S to the embedding of ORM_R. H_{SR} is an affine transformation. If ORM_T is an object-fixed ORM for the object **T** then H_{ST} is given by Equation (8). The time dependent generalizations of Equation (8), defined in 10.3.2, are also applicable to this case.

EXAMPLE ORM_S is an ORM for the space shuttle (as a spatial object). ORM_R is the Earth reference ORM <u>WGS 1984</u>. When in orbit at time *t*, $H_{sR}(t)$ transforms positions with respect to ORM_S to positions with respect to ORM WGS 1984.

If the object-space of **S** and the object-space of **T** do not share locations or are otherwise unrelated, a similarity transformation between ORMs for the respective object-spaces is not defined. An abstract object **S** and a physical object **T** is an important instance of this case (see <u>10.4.6</u>). However, if H_{SR} is an invertible affine transformation between ORM_S and the reference ORM for **T**, then, given an object-fixed ORM for object **T**, ORM_T, Equation (8) may be used to define an invertible affine transformation H_{ST} , from ORM_S to ORM_T.

10.4 Operations to change spatial coordinates between SRFs

10.4.1 Introduction

Given a coordinate c_s in a source SRF, SRF_s, and a target SRF, SRF_T, the change coordinate SRF operation²² computes the corresponding coordinate c_T in SRF_T. The general case of changing the spatial coordinate of a location from SRF_s to SRF_T is presented in formulations in <u>10.4.2</u> for time-independent (static) and time-dependent ORM relationships. The general case assumes that the source coordinate corresponds to a location that exists in both the source and target object spaces.

In the general case, ORM_S and ORM_T may differ, and the coordinate systems, CS_S and CS_T , may differ. The formulation simplifies in the special case²³ for which $ORM_S = ORM_T$ or, more generally, in the case for which the associated normal embeddings match. This case is presented in <u>10.4.3</u>. In a further specialization of the $ORM_S = ORM_T$ case, it is assumed that CS_S and CS_T are geodetic and/or map projection CSs. These assumptions produce further simplifications (see <u>10.4.4</u>).

The case for which $CS_S = CS_T$ and ORM_S and ORM_T differ²⁴ does not generally produce a computational simplification of the general case. However, when both the source and target SRFs are based on the CS <u>LOCOCENTRIC EUCLIDEAN 3D</u>, a simplification is produced and is presented in <u>10.4.5</u>. This case is important for operations on directions (<u>10.5.4</u>).

²² <u>ISO 19111</u> defines this case as a coordinate operation.

²³ <u>ISO 19111</u> defines this case as a coordinate conversion.

²⁴ <u>ISO 19111</u> defines this case as a coordinate transformation.

An extension of the change SRF operation to the case of unrelated source and target object-spaces is presented in 10.4.6 for linear SRFs. In that case, the ORM transformation is only restricted to an invertible affine transformation.

10.4.2 Change coordinate SRF operation

SRF_S and SRF_T are two object-fixed SRFs for a spatial object and *p* is a point in object-space that is in the coordinate system domains for both SRFs. $c_{\rm S}$ denotes the coordinate of *p* in SRF_S, and $c_{\rm T}$ denotes the coordinate of *p* in SRF_T. The determination of $c_{\rm T}$ as a function of $c_{\rm S}$ is an operation on the SRF pair (SRF_S, SRF_T). The most general form of the operation is:

$$c_{\mathrm{T}} = G_{\mathrm{T}}^{-1} \circ H_{\mathrm{ST}} \circ G_{\mathrm{S}}(c_{\mathrm{S}}) \tag{10}$$

where:

 $G_{\rm s}$ is the CS generating function of SRF_s,

 $\pmb{H}_{\rm ST}$ is the embedding transformation from ${\rm ORM}_{\rm S}$ to ${\rm ORM}_{\rm T}$, and

 G_{T} is the CS generating function of SRF_T.

See Figure 10.2. CS generating and inverse generation functions are specified in Clause 5.

Figure 10.2 — Change coordinate SRF operation

<u>Equation (10)</u> is known as the *Helmert transformation* when H_{ST} is approximated with the <u>Bursa-Wolfe</u> equation (see <u>Annex B</u>).

In the time-dependent case, Equation (10) may be generalized to:

$$\boldsymbol{c}_{\mathsf{T}}\left(t\right) = \boldsymbol{G}_{\mathsf{T}}^{\mathsf{-1}} \circ \boldsymbol{H}_{\mathsf{ST}}\left(t\right) \circ \boldsymbol{G}_{\mathsf{S}}\left(\boldsymbol{c}_{\mathsf{S}}\right).$$

EXAMPLE 1 If SRF_S and SRF_T are two <u>celestiodetic</u> SRFs for the same spatial object with different ellipsoid RDs, <u>Equation (10)</u> transforms the coordinate $c_{\rm S} = (\lambda_{\rm S}, \varphi_{\rm S}, h_{\rm S})$ with respect to one oblate ellipsoid to $c_{\rm T} = (\lambda_{\rm T}, \varphi_{\rm T}, h_{\rm T})$ with respect to the other oblate ellipsoid.

NOTE A transformation between two <u>celestiodetic</u> SRFs for the spatial object Earth is known as a *horizontal datum shift*. A number of numerical approximations developed to implement this operation have been published. Under the

ISO/IEC 18026:2009(E)

assumption of zero rotations and no scale differences ($\omega_1 = \omega_2 = \omega_3 = 0$ and $\Delta s = 0$), a widely used approximation²⁵ to directly transform $c_s = (\lambda_s, \varphi_s, h_s)$ to $c_T = (\lambda_T, \varphi_T, h_T)$, is the *standard Molodensky transformation* formula [83502T] as follows:

$$\begin{pmatrix} \lambda \\ \varphi \\ h \end{pmatrix}_{\mathrm{T}} = \begin{pmatrix} \lambda \\ \varphi \\ h \end{pmatrix}_{\mathrm{S}} + \begin{pmatrix} \Delta \lambda \\ \Delta \varphi \\ \Delta h \end{pmatrix}$$

where:

$$\Delta \lambda = \frac{-\Delta x \sin \lambda + \Delta y \cos \lambda}{\left(R_{N}(\varphi) + h\right) \cos \varphi}$$

$$\Delta \varphi = \left(\frac{1}{R_{N}(\varphi) + h}\right) \begin{cases} -\Delta x \sin \varphi \cos \lambda - \Delta y \sin \varphi \sin \lambda + \Delta z \cos \varphi \\ + \Delta a \left(R_{N}(\varphi) \varepsilon^{2} \sin \varphi \cos \varphi\right) / a \\ + \Delta f \left(R_{N}(\varphi)(a/b) R_{M}(\varphi)(b/a)\right) \sin \varphi \cos \varphi \end{cases}$$

$$\Delta h = \begin{cases} \Delta x \cos \varphi \cos \lambda + \Delta y \cos \varphi \sin \lambda + \Delta z \sin \varphi \\ - \Delta a \left(a / R_{N}(\varphi)\right) + \Delta f \left(b / a\right) R_{N}(\varphi) \sin^{2} \varphi \end{cases}$$

$$\Delta a = \text{difference in ellipsoid major semi-axis from source to target}$$

 Δf = difference in ellipsoid flattening from source to target

The quantities $a, b, \varepsilon^2, R_N(\varphi)$, and $R_M(\varphi)$ are defined in <u>Table 5.6</u>.

Equation (10) is only defined for a value of c_s in the CS_s domain if its corresponding position belongs to the CS_T range. If D_s^{-1} is the domain of the inverse generating function G_s^{-1} and D_T^{-1} is the domain of the inverse generating function G_{τ}^{-1} , Equation (10) is only defined for c_s in the set:

$$\boldsymbol{G}_{S}^{-1}\left(\boldsymbol{D}_{S}^{-1} \cap \boldsymbol{H}_{ST}^{-1}\left(\boldsymbol{D}_{T}^{-1}\right)\right) \equiv \left\{\boldsymbol{c}_{S} \text{ in } \boldsymbol{D}_{S} \mid \boldsymbol{H}_{ST}\left(\boldsymbol{G}_{S}(\boldsymbol{c}_{S})\right) \text{ in } \boldsymbol{D}_{T}^{-1}\right\}$$
(11)

EXAMPLE 2 SRF_s is SRF <u>GEOCENTRIC WGS 1984</u> and SRF_T is an instance of SRFT <u>MERCATOR</u>, with ORM <u>WGS 1984</u>. Equation (10) is not defined for any c_s that is on the *z*-axis of SRF_s, because the *z*-axis is not contained in the set in Equation (11).

SRF_T may optionally specify a valid-region $V_{\rm T}$ and may optionally specify an extended-valid region $E_{\rm T}$ (see 8.3.2.4). If $D_{\rm T}$ is the domain of the generating function $G_{\rm T}$, then $V_{\rm T} \subseteq E_{\rm T} \subseteq D_{\rm T}$. If Equation (10) is defined for $c_{\rm S}$, $c_{\rm T}$ may be valid ($c_{\rm T}$ is in $V_{\rm T}$), or extended valid ($c_{\rm T}$ is in $E_{\rm T} \setminus V_{\rm T}$) or neither. The set of $c_{\rm S}$ coordinates for which $c_{\rm T}$ is valid is:

$$\boldsymbol{G}_{\mathrm{S}}^{-1}\left(\boldsymbol{D}_{\mathrm{S}}^{-1} \cap \boldsymbol{H}_{\mathrm{ST}}^{-1}\left(\boldsymbol{G}_{\mathrm{T}}\left(\boldsymbol{E}_{\mathrm{T}}\right)\right)\right) = \left\{\boldsymbol{c}_{\mathrm{S}} \text{ in } \boldsymbol{D}_{\mathrm{S}} \mid \boldsymbol{H}_{\mathrm{ST}}\left(\boldsymbol{G}_{\mathrm{S}}(\boldsymbol{c}_{\mathrm{S}})\right) \text{ in } \boldsymbol{G}_{\mathrm{T}}\left(\boldsymbol{E}_{\mathrm{T}}\right)\right\}$$

where:

$$\boldsymbol{G}_{\mathrm{T}}(\boldsymbol{E}_{\mathrm{T}}) \equiv \left\{ \boldsymbol{p} \text{ in } \boldsymbol{D}_{\mathrm{T}}^{-1} \mid \boldsymbol{G}_{\mathrm{T}}^{-1}(\boldsymbol{p}) \text{ in } \boldsymbol{E}_{\mathrm{T}} \right\}.$$

In applications that functionally conform to an SRM profile, the domain of an SRF operation is restricted to the accuracy domain of the SRF as specified by that profile (see <u>Clause 12</u>).

²⁵ Historically it was thought that these approximations would require less computation than direct conversion. The perceived computational advantage may have been overcome by technology advances. New efficient algorithms for converting celesticocentric coordinates to celestiodetic coordinates have been developed that result in appreciably faster transformations without the attendant loss of accuracy.