

ETSI GS QKD 004 V2.1.1 (2020-08)

Quantum Key Distribution (QKD);
Application Interface

Disclaimer

The present document has been produced and approved by the Quantum Key Distribution (QKD) ETSI Industry Specification
Group (ISG) and represents the views of those members who participated in this ISG.

It does not necessarily represent the views of the entire ETSI membership.

GROUP SPECIFICATION

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/75
68

b28
a-

3c
b2-4

50
e-8

c8
a-c

bbe0
1fe

13
d0/e

tsi
-gs

-qkd-00
4-v

2.1
.1-

20
20

-08

;<O��G��c�
J��
�l�������-�Xg�I��n��V�lD��ar?��Cw���<l�?%W>�q�H�p/��>�����������k�x��F��d�GY#�ۘ�{�l��7]X�{������80�

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 2

Reference
RGS/QKD-004ed2_ApplIntf

Keywords
API, quantum cryptography, quantum key

distribution, security, use case

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2020.

All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and

of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/75
68

b28
a-

3c
b2-4

50
e-8

c8
a-c

bbe0
1fe

13
d0/e

tsi
-gs

-qkd-00
4-v

2.1
.1-

20
20

-08

.c� ��}�](4ƫ�h��$���;��n���u�"�|�_k�!����Y�#c��T4��L��$�
�S.�T���;tQ���4o`&�1�I����]B���J]����.�� �Ul}(F�[L���Nw

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 3

Contents

Intellectual Property Rights .. 4

Foreword ... 4

Modal verbs terminology .. 4

1 Scope .. 5

2 References .. 5

2.1 Normative references ... 5

2.2 Informative references .. 5

3 Definition of terms, symbols and abbreviations ... 5

3.1 Terms .. 5

3.2 Symbols .. 6

3.3 Abbreviations ... 6

4 Introduction .. 7

5 QKD Application Interface Specification Description ... 7

6 QKD Application Interface API Specification ... 9

6.1 General ... 9

6.2 Sequence diagrams for QKD Application Interface ... 12

6.2.1 General .. 12

6.2.2 Case 1: Undefined KSID in a single link scenario .. 13

6.2.3 Case 2: Undefined KSID and failed get key call in a single link scenario .. 13

6.2.4 Case 3: Predefined KSID in a single link scenario ... 14

6.2.5 Case 4: Predefined KSID and failed get key call in a single link scenario ... 15

6.2.6 Case 5: Application discovery in a QKD network .. 15

Annex A: Void ... 17

Annex B (informative): Conventional Key Management Systems ... 18

Annex C (informative): Relationship of this API to ETSI GS QKD 014 "Protocol and Data
Format of REST-based Key Delivery API" .. 19

Annex D (informative): Bibliography ... 20

Annex E (informative): Change History .. 21

History .. 22

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/75
68

b28
a-

3c
b2-4

50
e-8

c8
a-c

bbe0
1fe

13
d0/e

tsi
-gs

-qkd-00
4-v

2.1
.1-

20
20

-08

g�|�}x�ۉ:�]�z˙�#Ùl�H9��\n�'�H�S�J�-��O���q�m�8��������хn�S�d�AS*���P���̨�`��f�i!S�5w+��;b�I��@��1��{�ũ�ĞM^��

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 4

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) Quantum Key
Distribution (QKD).

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/75
68

b28
a-

3c
b2-4

50
e-8

c8
a-c

bbe0
1fe

13
d0/e

tsi
-gs

-qkd-00
4-v

2.1
.1-

20
20

-08

#�^�O��H��,���Wz����pyWs�������o��{��cC���Ё�ټsK�k���a�G�P�E2�G�F����9�0���ShРˬ�Cy��H|���,
�Z�Ä�t�`�
�:��QG�

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 5

1 Scope
The present document is intended to specify an Application Programming Interface (API) between a QKD key manager
and applications. The function of a QKD key manager is to manage the secure keys produced by an implementation of a
QKD protocol and to deliver the identical set of keys, via this API, to the associated applications at the communication
end points.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] IANA Media Type registry list of Directories of Content Types and Subtypes.

NOTE: Available at http://www.iana.org/assignments/media-types/.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] OASIS Standard (22 November 2017): "Key Management Interoperability Protocol Specification
Version 1.4". Editor by Tony Cox.

NOTE: Available at http://docs.oasis-open.org/kmip/spec/v1.4/os/kmip-spec-v1.4-os.html.

[i.2] ETSI GS QKD 014 (V1.1.1): "Quantum Key Distribution (QKD); Protocol and data format of
REST-based key delivery API".

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

Application Programming Interface (API): interface implemented by a software program to be able to interact with
other software programs

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/75
68

b28
a-

3c
b2-4

50
e-8

c8
a-c

bbe0
1fe

13
d0/e

tsi
-gs

-qkd-00
4-v

2.1
.1-

20
20

-08

)��(�w�C8dW�1/#��I5���\����̧���7l��?:2[����U��Jя:�Y��"C�
�F3^�P!ް��'/f�p��#�T��TF�������O��C���aR��������U<�F

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 6

Key Management Interoperability Protocol (KMIP): protocol for the communication between enterprise key
management systems and encryption system

NOTE: The KMIP is directed by the OASIS initiative.

key management layer: abstraction in a layered model including physically distributed key managers in two or more
network nodes

NOTE: The key management layer sits between QKD modules and various applications. It manages the
synchronization and deletion of keys, etc. as well as key delivery to applications.

link encryptor: device performing link encryption, i.e. the communication security process of encrypting / decrypting
information between two peers on the data link level

Organization for the Advancement of Structured Information Standards (OASIS): global consortium that drives
the development, convergence and adoption of e-business and web service standards, including KMIP

QKD application interface: interface between a QKD key manager and one or more application

QKD link: set of active and/or passive components that connect a pair of QKD modules to enable them to perform
QKD and where the security of symmetric keys established does not depend on the link components under any of the
one or more QKD protocols executed

QKD module: set of hardware and software and/or firmware components contained within a defined cryptographic
boundary that implements part of one or more QKD protocol(s) to be capable of securely establishing symmetric keys
with at least one other QKD module

QKD protocol: list of steps including the transport of quantum states that have to be performed by QKD modules to
establish symmetric keys between remote parties with security based on quantum entanglement or the impossibility of
perfectly cloning the transported quantum states

Quality of Service (QoS): description or measure of the overall performance of a service provided to an application
after any management policies for prioritizing different applications or users have been applied

synchronization: function to ensure that symmetric keys in two key managers are identical

Transport Layer Security (TLS): cryptographic protocols used to encrypt the segments of network connections above
the Transport Layer, using symmetric cryptography for privacy and a keyed message authentication code for message
reliability

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AAA Authentication, Authorization and Accounting
API Application Programming Interface
APPA Application at host A
APPB Application at host B
APPZ Application at host Z
CORBA Common Object Request Broker Architecture
HTTPS Hypertext Transfer Protocol Secure
IANA Internet Assigned Numbers Authority
ITS Information Theoretical Secure
JSON JavaScript Object Notation
KIMP Key Management Interoperability Protocol
KM Key Manager
KMIP Key Management Interoperability Protocol
KSID Key stream ID

OASIS Organization for the Advancement of Structured Information Standards

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/75
68

b28
a-

3c
b2-4

50
e-8

c8
a-c

bbe0
1fe

13
d0/e

tsi
-gs

-qkd-00
4-v

2.1
.1-

20
20

-08

��P(����g�ޱ������JVC>��f#�|+����㒷
�%D�*�M�������Εy����Ks�����5�7Ho�K��W���;b�����cs�����������yW9�5��sQ�(��E�

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 7

PAP Password Authentication Protocol
QKD Quantum Key Distribution
QKDA QKD key management layer peer at host A
QKDB QKD key management layer peer at host B
QoS Quality of Service
REST Representational State Transfer
SDN Software Defined Networking
SSL Secure Socket Layer
TLS Transport Layer Security
TTL Time To Live
URI Uniform Resource Identifier

4 Introduction
The present document is intended to specify an Application Programming Interface (API) between QKD Key Managers
(KMs) and applications. The function of a QKD KM is to manage secure keys produced by an implementation of a
QKD protocol and to deliver, on demand, identical sets of keys, via this API, to peer applications at the communication
end points. It should be noted that there may be multiple levels of key managers (e.g. one at the QKD link level and
another one at the QKD network level) and the API specified in the following clauses may be implemented in every
QKD key manager level and that such key interchange is accomplished within the user's local security perimeter.

Manufacturers may implement this API wherever a QKD key manager is provided. Manufacturers may provide
additional APIs and expanded functionality as they deem fit, realizing that these additions may be incompatible with
versions provided by other vendors. Also, ther high level APIs can be built on top of this primary API, such as the
REST API specified in ETSI GS QKD 014 [i.2].

5 QKD Application Interface Specification Description
The present document encompasses the ability to have multiple levels of key managers (e.g. one at the QKD link level
and another one at the QKD network level), see figure 1 and figure 2, and the API specified in the following clauses
may apply to every QKD key manager level and that this interchange is accomplished within the user's local security
perimeter, referred to as sites. The methods by which a key manager accomplishes these functions is beyond the scope
of the present document, but it is expected that external communication between key managers at different sites will be
necessary. In addition, some communication between the peer applications may also be necessary to communicate a
common key association.

The simplest example, figure 1, shows a single QKD link, with end points at Site A and Site B. Each site has a single
application (shaded in yellow) and a single QKD module, enclosed by a blue box, which implements its part in a QKD
protocol (shaded in red) to produce QKD keys that are managed by a QKD key manager peer (shaded in green). The
single peer application in this case, uses the QKD application interface to acquire identical sets of secure keys in the two
sites on demand.

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/75
68

b28
a-

3c
b2-4

50
e-8

c8
a-c

bbe0
1fe

13
d0/e

tsi
-gs

-qkd-00
4-v

2.1
.1-

20
20

-08

�;����A�5;ƛ8W�m��|��Hi
�������;=DM�����G�e8>˥,���.��j_��9b^�#x9���v_�jZۡ�������c
���O��(J�X��[�����RF�+���V�Z

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 8

Figure 1: QKD Application Interface and peer relationships
Sites A and B represent security perimeters at each site

A more general example of two sites in a QKD network is shown in figure 2. Here two Sites of many in the network
that contain a number of applications are shown. Site A and Site B are connected via a single QKD link between QKD
Module A3 and QKD Module B1. The end points of the other QKD modules are not shown. In addition, network layer
key managers, referred to as a QKD key servers are also depicted. The function of the QKD key servers is to manage
keys between end points and deliver identical sets of keys to the applications at these end points. Note that the QKD
application interface specified in the present document may be used to deliver keys from the QKD key management
peers to the QKD key servers as well as to deliver keys from the QKD key servers to applications.

Figure 2: QKD Application Interface at two levels and peer relationships for
Sites within a QKD Network. Sites A and B represent security perimeters at each location

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/75
68

b28
a-

3c
b2-4

50
e-8

c8
a-c

bbe0
1fe

13
d0/e

tsi
-gs

-qkd-00
4-v

2.1
.1-

20
20

-08

�g1g3ߵ��0"<v������
�k*�<��N��Fh�"�q0��r�W��
��
R�O�mS��U%x0�!@P?Z��$����ȵb���K_�}^CӼ��A��9����m�n�5�@�#�u�p��

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 9

6 QKD Application Interface API Specification

6.1 General
A QKD key manager implementing this application interface shall provide the following API functions.

Table 1

Name Description
OPEN_CONNECT Reserve an association (Key_stream_ID) for a set of future keys at both ends of the QKD link

through this distributed QKD key management layer and establish a set of parameters that
define the expected levels of key service. This function shall block until the peers are
connected or until the Timeout value in the QoS parameter is exceeded.

CLOSE Terminate the association established for this Key_stream_ID. No further keys shall be
allocated for this Key_stream_ID after the association has been closed. Due to timing
differences at the other end of the link this peer operation will happen at some other time and
any unused keys shall be held until that occurs and then discarded or the TTL (Time To Live
QoS parameter) has expired.

GET_KEY Obtain the required amount of key material requested for this Key_stream_ID. Each call shall
return the fixed amount of requested key, in the key_buffer parameter, or an error message
indicating why it failed. Together with the requested key, the QKD key manager peer shall
return an index value, or allow the application to specify the position of the key to be retrieved
for synchronization purposes via the index parameter. The key position will be the result of
multiplying the index value by the Key_chunk_size value within the QoS parameters. The call
will return information about the chunk of key in the Metadata_buffer parameter, if the
Metadata_size parameter is not zero. If it is zero, no Metadata will be returned. If the
Metadata_size is not zero and this information cannot fit into the buffer provided, the call will
fail without providing any key, but will return the needed buffer size in the Metadata_size
parameter and will set a flag in the status parameter. Thus, the application can reissue the
call with the buffer size set correctly or to zero, without loss of key. This function may be
called as often as desired, but the QKD key manager only needs to respond at the bit rate
requested through the QoS parameters, or at the best rate the system can manage. The QKD
key manager is responsible for reserving and synchronizing the keys at the two ends of the
QKD link through communication with its peers. This function always returns with the status
parameter indicating success or failure, depending on the request made via the
OPEN_CONNECT function. The Timeout value for this function is specified in the
OPEN_CONNECT() function.

The syntax of these functions are as follows:

NOTE: The parameter "Key_stream_ID" is an output parameter when the caller is initially opening the
connection and the value passed in is "NULL". If the value is not "NULL" the value is assumed to be
either a "Key_stream_ID" recently established by the peer end or a specifically desired/predefined
"Key_stream_ID". For use in all other functions "Key_stream_ID" is an input. If the "Key_stream_ID" is
already in use by some other application, the OPEN_CONNECT function will return with an error. On
return, the structure QoS is the closest QoS that the system can provide (best effort). If on input QoS is
"NULL" on a certain field of the structure, the system is free to provide the one that it considers most
appropriate. In particular, if a KSID has been already registered, the QoS structure will be filled with the
QoS values previously assigned to that KSID, independently of any value of the QoS in the
OPEN_CONNECT call.

The function parameters are described in table 2.

Interface QKD{

 OPEN_CONNECT (in source, in destination, inout QOS, inout Key_stream_ID, out status);

 GET_KEY (in Key_stream_ID, inout index, out Key_buffer, inout Metadata, out status);

 CLOSE (in Key_stream_ID, out status);

}

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/75
68

b28
a-

3c
b2-4

50
e-8

c8
a-c

bbe0
1fe

13
d0/e

tsi
-gs

-qkd-00
4-v

2.1
.1-

20
20

-08

��v���^��T������� ��Q�Ë���HXK*������B�>M��"^�^@�������pf�ݽ��A<�w.����]���L,%vs���Z���w��T"��E�m���&P��(�"1§Y|�c

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 10

Table 2: Description of API function parameters

Name Description Type Comments
Key_stream_ID (KSID) A unique identifier for

the group of
synchronized bits
provided by the QKD
Key Manager to the
application

UUID_v4
16 bytes
(128 bits)

It contains a reference to the necessary information
to locate a key, but does not contain any key
material. Key material cannot be derived from the
Key_stream_ID.
It shall be represented as a character array
(char *), with the high order octet being the lowest
significant octet.
It may be passed to and stored in other applications
at other sites.
It shall be unique and both peers will use that same
value to reference their application key stream.
It can be previously agreed upon between the peer
applications or sent between them by a public
channel.

Key_buffer Buffer containing the
current stream of
keys.

Array of
bytes
(octets)

Key buffer is an array of bits packed into octets
(char*) ordered such that bit[0] of octet[0] is the 1st
bit and bit[7] of octet[n] is the 8*n+8th bit.

Index Position of the key to
be accessed within
the reserved key
store for the
application

32 bit
unsigned
integer

For client/server synchronization purposes, the index
value allows one to specify which position within the
reserved key stored is to be accessed. The actual
position will be calculated as the multiplication of the
index value by Key_chunk_size from the QoS
parameters.

Source Source identifier
defined as a uniform
resource identifier

URI Identifier of the source application connecting to the
QKD key management layer. The identifier is
structured as a URI. If a client/server scheme is
defined, the source will integrate the URI of the
server.

Destination Destination identifier
defined as a uniform
resource identifier

URI Identifier of the destination application connecting to
the QKD key management layer. The identifier is
structured as a URI. If a client/server scheme is
defined, the source will integrate the URI of the
client.

QoS Structure describing the characteristics of the requested key source
Key_chunk_size Length of the key

buffer, in Bytes,
requested by the
application

32 bit
unsigned
integer

If the requested key amount cannot be provided, an
error shall be returned in the status parameter.

Max_bps Maximum key
rate, in bps,
requested by the
application

32 bit
unsigned
integer

This is intended to provide guidance to the key
management layer on expected maximum demand.
If the peer cannot meet the requested rate, it may
choose to do its best, which may be lower than the
requested rate, or reject the request.

Min_bps Minimum key
rate, in bps,
required by the
application

32 bit
unsigned
integer

This is intended to provide an estimation of the
minimum key rate needed by the application to the
QKD key management layer, so that an application
could maintain its security channels. If the peer
cannot meet the requested rate, it may reject the
request.

Jitter Maximum
expected
deviation, in bps,
for key delivery

32 bit
unsigned
integer

This value allows applications to specify flow
variation of key bits with a minimum deviation for the
delivery rate.

Priority Priority of the
request

32 bit
unsigned
integer

This is intended to provide guidance to the QKD Key
Management layer about the priority level of the
request. The handling of this information is left to the
specific implementation.

Timeout Time, in msec,
after which the
call will be
aborted, returning
an error.

32 bit
unsigned
integer

If this much time has passed and the one of the API
functions has not completed, the function will return
a TIMEOUT_ERROR in the status parameter
This value shall be expressed in milliseconds.

iTeh
 STANDARD PREVIE

W

(st
an

dard
s.it

eh
.ai

)

Full s
tan

dar
d:

http
s:/

/st
an

dar
ds.it

eh
.ai

/ca
tal

og
/st

an
dar

ds/s
ist

/75
68

b28
a-

3c
b2-4

50
e-8

c8
a-c

bbe0
1fe

13
d0/e

tsi
-gs

-qkd-00
4-v

2.1
.1-

20
20

-08

rn���aL1�o�t�'�J�B<���*���l����_�zAO���\�1�&+��[��:�f�V��y�����D#�5Z�S�f��f���w���m�DA|��wrY��?�j�ÄX�V�\��J��tt�W~�

