INTERNATIONAL STANDARD

Second edition 2014-05-01

Hygrothermal performance of building equipment and industrial installations — Calculation of water vapour diffusion — Cold pipe insulation systems

iTeh ST installations industrielles - Calcul de la diffusion de vapeur d'eau -Systèmes d'isolation de tuyauteries froides

<u>ISO 15758:2014</u> https://standards.iteh.ai/catalog/standards/sist/b3e8fa78-40de-4000-a362-75d013f01034/iso-15758-2014

Reference number ISO 15758:2014(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 15758:2014</u> https://standards.iteh.ai/catalog/standards/sist/b3e8fa78-40de-4000-a362-75d013f01034/iso-15758-2014

COPYRIGHT PROTECTED DOCUMENT

© ISO 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Page

Contents

Forew	ord		iv		
Introd	luctio	n	v		
1	Scop	e	1		
2	Normative references Terms, definitions and symbols				
3					
4	Calculation formulae				
	4.1	General	3		
	4.2	Homogeneous insulation	3		
	4.3	Multi-layer insulation systems	4		
	4.4	Systems with capacity for drying	4		
5	Boundary conditions				
6	Calculation procedure				
	6.1	General	6		
	6.2	Calculation of rate of condensation in single homogenous insulation layer	6		
	6.3	Calculation of rate of condensation in multi-layer insulation system	6		
Annex	A (inf	formative) Examples	9		
Annex	B (initial definition of the second	formative) System with capacity for drying and experimental determination of pration rate from surface of wet wick fabrice E.V.I.F.W.	11		
Biblio	Bibliography (standards.iteh.ai)				

<u>ISO 15758:2014</u> https://standards.iteh.ai/catalog/standards/sist/b3e8fa78-40de-4000-a362-75d013f01034/iso-15758-2014

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2. www.iso.org/directives

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received. www.iso.org/patents

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ASO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 163, *Thermal performance and energy use in the built environment*, Subcommittee SC 2, *Calculation methods*.

This second edition cancels and replaces the first edition (ISO 15758:2004)) Which has been technically revised. The main changes are the following:d013f01034/iso-15758-2014

- in <u>Clause 5</u>, b), the alternative of using annual mean temperature and vapour pressure has been removed;
- the method of calculation given in <u>6.3</u> has been changed such that the total amount of condensation water in the whole pipe system is calculated based only on the outermost tangent to the saturation pressure, p_{sat};
- <u>Figure 1</u> has been modified;
- the example given in <u>A.3</u> has been changed;
- in <u>Annex B</u>, an explanation of the system with capacity for drying has been added;
- references have been added to the Bibliography.

Introduction

If the thermal insulation of a cold pipe system is not completely water vapour tight, there will be a flow of water vapour from the warm environment to the surface of the pipe, whenever the temperature of the surface of the cold pipe is below the dew point of the ambient air. This flow of water vapour leads to an interstitial condensation in the insulation layer and/or dew formation on the surface of the pipe itself. Interstitial condensation may cause the insulation material to deteriorate and dew formation on the surface of a metal pipe may cause corrosion over time. If the temperature is below 0 °C ice will be formed and the methods of this standard will not apply.

In period, when the dew point of the ambient air is higher than the temperature of the outer surface of the insulation, surface condensation will occur. This is dealt with in ISO 12241.

Different measures are available to control water vapour transfer and reduce the amount of condensation. The following are normally applied:

- a) Installation of a vapour retarder;
- b) Use of insulation materials with a high water vapour resistance factor (low permeability);
- c) Use of a vapour retarder and a capillary active fabric to continuously remove condensed water from the pipe surface to the environment; see <u>Annex B</u> for an example.

Which protection measure is chosen depends on the ambient climate, the temperature of the medium in the pipe and the water vapour diffusion resistance of the insulation layer. The success of any system is strongly dependent on workmanship and maintenance. In any case anti-corrosion measures should be applied to a metal pipe in severe conditions.

The expected economic lifetime of an insulation system, assuming a maximum acceptable accumulated moisture content, can be calculated using the methods in this standard.

https://standards.iteh.ai/catalog/standards/sist/b3e8fa78-40de-4000-a362-75d013f01034/iso-15758-2014

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 15758:2014</u> https://standards.iteh.ai/catalog/standards/sist/b3e8fa78-40de-4000-a362-75d013f01034/iso-15758-2014

Hygrothermal performance of building equipment and industrial installations — Calculation of water vapour diffusion — Cold pipe insulation systems

1 Scope

This International Standard specifies a method for calculating the density of the water vapour flow rate in cold pipe insulation systems, and the total amount of water diffused into the insulation over time. The calculation method presupposes that water vapour can only migrate into the insulation system by diffusion, with no contribution from airflow. It also assumes the use of homogeneous, isotropic insulation materials so that the water vapour partial pressure is constant at all points equidistant from the axis of the pipe.

This International Standard is applicable when the temperature of the medium in the pipe is above 0 °C. It applies to pipes inside buildings as well as in the open air.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 9346, Hygrothermal performance of buildings and building materials — Physical quantities for mass transfer — Vocabulary ISO 15758:2014

https://standards.iteh.ai/catalog/standards/sist/b3e8fa78-40de-4000-a362-ISO 12241, Thermal insulation for building equipment and industrial installations — Calculation rules

ISO 12572, Hygrothermal performance of building materials and products — Determination of water vapour transmission properties

ISO 13788, Hygrothermal performance of building components and building elements — Internal surface temperature to avoid critical surface humidity and interstitial condensation — Calculation methods

3 Terms, definitions and symbols

For the purposes of this document, the terms and definitions given in ISO 9346, ISO 12572 and ISO 13788, and the following terms, definitions and symbols (see <u>Table 1</u>) apply.

3.1

exposed moist area

surface area of a capillary active fabric that is exposed to the ambient atmosphere

3.2

vapour retarder

material with high resistance to the flow of water vapour

3.3

corrected water vapour diffusion equivalent air layer thickness

thickness of an imaginary plane layer with μ =1, and an area of πD_j which has the same diffusion resistance as the layer *j* with $\mu = \mu_j$

Note 1 to entry: See Formula (18).

Symbol	Quantity	Unit ^a			
A'e	Surface area from which evaporation takes place per linear metre of the pipe	m²/m			
<i>D</i> ₀	Outside diameter of cold pipe	m			
D_j	Outside diameter of <i>j</i> -th layer of an insulation system	m			
D_n	Outside diameter of the outer layer of an insulation system	m			
G	Total moisture uptake over a period per linear metre of pipe [refer to Formula (2)]	kg/m			
Gʻ	Total moisture uptake over a period per linear metre of pipe	kg/m			
Р	Actual atmospheric pressure	Ра			
<i>P</i> ₀	Standard atmospheric pressure = 101 325	Ра			
R _v	Gas constant for water vapour = 461,5	J/(kg·K)			
Т	Thermodynamic temperature	К			
Z' _{fl}	Water vapour resistance of one thin foil, cladding or skin per linear metre of pipe	m·s·Pa/kg			
Z'j	Water vapour resistance of <i>j</i> -th layer of an insulation system per linear metre of pipe	m·s·Pa/kg			
Ζ'P	Water vapour resistance of insulation system per linear metre of pipe	m·s·Pa/kg			
d	Thickness of an insulation layer ndards, iteh, ai)	m			
fe	Evaporation factor	kg/(m²·s·Pa)			
g'	Water vapour flow rate within the insulation per linear metre of pipe	kg/(m·s)			
g'c	Rate of condensation per linear metre of pipe ₅₇₅₈₋₂₀₁₄	kg/(m·s)			
g'e	Evaporation rate per linear metre of pipe	kg/(m·s)			
hc	Convection heat transfer coefficient	W/(m ² ·K)			
р	Partial water vapour pressure	Ра			
pa	Partial water vapour pressure of air	Ра			
p _{sat}	Saturated water vapour pressure	Ра			
<i>s</i> d	Water vapour diffusion equivalent air layer thickness	m			
<i>S</i> df	Water vapour diffusion equivalent air layer thickness of foils	m			
t	Period of calculation (month or year)	Month, year			
X	Distance	m			
δ	Water vapour permeability	kg/(m·s·Pa)			
δ_0	Water vapour permeability of air	kg/(m·s·Pa)			
σ _{d,j}	Corrected water vapour diffusion equivalent air layer thickness of layer <i>j</i>	m			
$ ilde{\sigma}_{\mathrm{d},j}$	Total corrected water vapour diffusion equivalent air layer thickness from surface of cold pipe to the outside of layer <i>j</i>	m			
μ	Water vapour resistance factor	—			
θ_0	Temperature of the medium in the pipe	°C			
a For practi	For practical reasons, hours or days are often used instead of seconds as units of time.				

Table 1 —	Symbols	and associat	ted units
-----------	----------------	--------------	-----------

4 Calculation formulae

4.1 General

The density of water vapour flow rate, *g*, through a material is calculated by the following formula:

$$g = -\delta \frac{\mathrm{d}p}{\mathrm{d}x} \tag{1}$$

where δ is the water vapour permeability of the material.

The total moisture uptake during a period, *G*, is given by

$$G = \int_{0}^{t} g \, \mathrm{d}t \tag{2}$$

In calculations the diffusion resistance factor, μ , is commonly used instead of the permeability:

$$\mu = \frac{\delta_0}{\delta} \tag{3}$$

where δ_0 is the water vapour permeability of still air, which can be calculated from

$$\delta_0 = \frac{0,083P_0}{R_V \cdot T \cdot P} \cdot \left(\frac{T}{273}\right)^{1,81} \text{Feh STANDARD PREVIEW}$$
(4)

For approximate calculations, δ_0 can be assumed to be constant in the temperature range under consideration; the following value can therefore be used: <u>ISO 157582014</u>

 $\delta_0 = 2,0 \times 10^{-10} \text{ https://standards.iteh.ai/catalog/standards/sist/b3e8fa78-40de-4000-a362-} (5)$

4.2 Homogeneous insulation

In the case of a cold pipe with a single homogeneous layer of insulation, the density of water vapour flow per metre of an insulated cold pipe is given by replacing the differential expression by the vapour pressure difference in Formula (1):

$$g' = \frac{p_{\rm a} - p_{\rm sat}(\theta_0)}{Z'_{\rm P}} \tag{6}$$

where

*p*_a is the vapour pressure of the ambient air, in Pa;

 $p_{sat}(\theta_0)$ is the saturation vapour pressure at the outside surface of the pipe, in Pa;

 $Z'_{\rm P}$ is the water vapour resistance per linear metre of the pipe insulation, in m·s·Pa/kg, defined by Formula (7):

$$Z'_{\rm P} = \frac{\ln\left(\frac{D_1}{D_0}\right)}{2\pi\,\delta} \tag{7}$$

If the actual vapour pressure, p, does not cross the saturation pressure, p_{sat} , condensation occurs only at the surface of the cold pipe. When the actual vapour pressure crosses the saturation vapour pressure, follow the procedure described in <u>Clause 6</u>.

The total water uptake over a period *t* is then given by

$$G' = \int_{0}^{t} \frac{p_{a}(t) - p_{sat} \left[\theta_{0}(t)\right]}{Z'_{P}} dt$$
(8)

4.3 Multi-layer insulation systems

The water vapour resistance, Z'_{P} , of an insulation system with *n* different layers is given by

$$Z'_{\rm P} = \sum_{j=1}^{n} \frac{\ln\left(\frac{D_j}{D_{j-1}}\right)}{2\pi\delta_j} \tag{9}$$

which gives

$$Z'_{\rm P} = \frac{1}{2\pi\delta_0} \sum_{j=1}^n \mu_j \ln\left(\frac{D_j}{D_{j-1}}\right)$$
(10)

where

$$\mu_j = \frac{\delta_0}{\delta_j}$$
iTeh, **STANDARD PREVIEW**

j = 1 to *n* defines the layers from the cold pipe outwards. **PREVIEW**

Formula (10) can be an approximate means of calculating water vapour resistance of a homogeneous insulation material with water vapour resistance highly dependent on temperature. ISO 15758-2014

NOTE See the example given in Areads.iteh.ai/catalog/standards/sist/b3e8fa78-40de-4000-a362-

If the outer layer, n, is a vapour retarder jacket, foil or skin, with negligible thickness, but with large water vapour diffusion-equivalent air layer thickness, s_{df} , the water vapour resistance of the retarder will be

$$Z'_{n} = \frac{1}{\pi \delta_{0} D_{n}} s_{\rm df} = \frac{1}{2 \pi \delta_{0}} \frac{2 s_{\rm df}}{D_{n}}$$
(11)

The water vapour resistance of the whole system is then

$$Z'_{\rm P} = \frac{1}{2\pi\delta_0} \left[\sum_{j=1}^{n-1} \mu_j \ln\left(\frac{D_j}{D_{j-1}}\right) + \frac{2s_{\rm df}}{D_n} \right]$$
(12)

The total water uptake over a period *t* is then given by Formula (8).

4.4 Systems with capacity for drying

For cold pipe systems with drying-out capacities the total water uptake G' in the system is given by

$$G' = \int_{0}^{t} (g' - g'_{e}) dt$$
(13)

where g'_{e} is the drying capacity per linear metre of pipe, in kg/(m·s).

For insulation systems, where the drying capacity is obtained by utilizing the wicking action of a capillary active fabric, the capacity is determined by the evaporation from the freely exposed moist area of the fabric per metre length of pipe, A'_e :

$$g'_{\rm e} = f_{\rm e} \left(p_{\rm sat}(\theta_{\rm a}) - p_{\rm a} \right) A'_{\rm e} \tag{14}$$

where $p_{sat}(\theta_a)$ is the saturation vapour pressure at the ambient temperature, in Pa.

The evaporation factor, f_{e} , can be determined by measurement or calculation:

$$f_{\rm e} = \frac{h_{\rm c}}{R_{\rm v} T \rho c_p} \tag{15}$$

where

- h_c is the convection heat transfer coefficient, in W/(m²·K);
- R_v is the gas constant for water vapour = 461,5 J/(kg·K);
- ρ is the density of air = 1,205 kg/m³ at 20 °C;
- c_p is the specific heat capacity at constant pressure of air = 1 005 J/(kg·K) at 20 °C.

NOTE A method of measurement is given in <u>B.2</u>. Formula (14) is an approximate expression because the wick temperature is not equal to the ambient temperature due to the evaporation. Further information regarding Formula (15) is to be found in Reference^[5] in the Bibliography.

For horizontal and vertical pipes in still air $h_c = 10$ W/(m²·K), giving $f_e = 6 \times 10^{-8}$ kg/(m²·s·Pa).

The total water uptake over a time, t, is then given by the state of the state o

$$G' = \int_{0}^{t} \left[\frac{p_{\rm a} - p_{\rm sat}(\theta_0)}{Z'_{\rm P}} - f_{\rm e}(p_{\rm sat}(\theta_{\rm a}) - p_{\rm a})A'_{\rm e} \right] dt$$
(16)

5 Boundary conditions

The following boundary conditions for temperature and vapour pressure shall be used to evaluate the formulae given in <u>Clause 4</u>.

a) At surface of cold pipe

The surface temperature of the cold pipe shall be taken as the temperature of the medium in the pipe. The vapour pressure at the surface shall be taken as the saturated vapour pressure at that temperature, i.e. a relative humidity of 1,0.

b) Ambient air

Outside buildings, use the monthly mean temperature and vapour pressure of the warmest month.

Inside buildings, use the temperature and vapour pressure representative of the use of the building in the warmest month of the year. Methods for deriving internal conditions are given in ISO 13788.

NOTE Use of the monthly mean vapour pressure gives results which are on the safe side.