### NORME INTERNATIONALE

ISO 1000

Troisième édition 1992-11-01

# Unités SI et recommandations pour l'emploi de leurs multiples et de certaines autres unités

#### iTeh STANDARD PREVIEW

Sl units and recommendations for the use of their multiples and of certain other units

ISO 1000:1992 https://standards.iteh.ai/catalog/standards/sist/9217b890-6a5d-44d7-94ed-ac9cdddbbb95/iso-1000-1992



#### **Avant-propos**

L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec la Commission électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.

Les projets de Normes internationales adoptés par les comités techniques sont soumis aux comités membres pour vote. Leur publication comme Normes internationales requiert l'approbation de 75 % au moins des comités membres votants.

La Norme internationale ISO 1000 a été élaborée par le comité technique ISO/TC 12, Grandeurs, unités, symboles, facteurs de conversion.

ISO 1000:1992

Cette troisième édition annulétareturdremplacealdastadeuxième 2 édition 6a5d-44d7-94cd-(ISO 1000:1981). Les principaux changements par d'apport à la deuxième édition sont les suivants:

- la décision du Comité international des poids et mesures (CIPM) en 1980 concernant le statut des unités supplémentaires à été introduite;
- quelques grandeurs et unités de l'ISO 31, parties 9, 10, 12 et 13 ont été ajoutées à l'annexe A;
- l'ancienne définition du mètre dans l'annexe B a été remplacée par la nouvelle définition.

Le rôle du comité technique ISO/TC 12 est de normaliser les unités et les symboles des grandeurs et des unités (et les symboles mathématiques) qui sont employées dans les différents domaines de la science et de la technique, et de donner — quand c'est nécessaire — des définitions de ces grandeurs et de ces unités. Le domaine des travaux comprend aussi les facteurs de conversion normalisés entre les diverses unités. Pour remplir cette tâche, l'ISO/TC 12 a élaboré l'ISO 31 et l'ISO 1000.

© ISO 1992

Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.

Organisation internationale de normalisation Case Postale 56 ● CH-1211 Genève 20 ● Suisse Imprimé en Suisse L'annexe A fait partie intégrante de la présente Norme internationale. L'annexe B est donnée uniquement à titre d'information.

## iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 1000:1992 https://standards.iteh.ai/catalog/standards/sist/9217b890-6a5d-44d7-94ed-ac9cdddbbb95/iso-1000-1992

## iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 1000:1992</u> https://standards.iteh.ai/catalog/standards/sist/9217b890-6a5d-44d7-94ed-ac9cdddbbb95/iso-1000-1992

#### Unités SI et recommandations pour l'emploi de leurs multiples et de certaines autres unités

#### iTeh STANDARD PREVIEW

#### **Domaine d'application**

sur la présente Norme internationale sont invitées à (standards rechercher la possibilité d'appliquer l'édition la plus récente de la norme indiquée ci-après. Les membres ISO 1000:1 de la CEI et de l'ISO possèdent le registre des Nor-

La présente Norme internationale

a) décrit le Système international d'unités l'i (dans les ndards/mes internationales en vigueur à un moment donné.

ac9cdddbbb95/iso-1000-1992 articles 3, 4 et 6);

b) recommande les multiples et sous-multiples décimaux des unités SI à utiliser dans la pratique courante et indique certaines autres unités pouvant être utilisées avec le Système international d'unités (dans les articles 5 et 7, et dans l'annexe A);

c) cite les définitions des unités SI de base (dans l'annexe B).

#### Référence normative

La norme suivante contient des dispositions qui, par suite de la référence qui en est faite, constituent des dispositions valables pour la présente Norme internationale. Au moment de la publication, l'édition indiquée était en vigueur. Toute norme est sujette à révision et les parties prenantes des accords fondés CEI 27-1:1971,2 Symboles littéraux à utiliser en électrotechnique — Partie 1: Généralités

#### 3 Unités SI

Le nom «Système international d'unités», et l'abrévation internationale SI ont été adoptés par la 11e Conférence générale des poids et mesures (CGPM) en 1960.

Ce système comprend

- les unités de base;
- les unités dérivées, y compris les unités supplémentaires

qui forment ensemble le système cohérent d'unités

<sup>1)</sup> Des renseignements complets sur le Système international d'unités sont donnés dans la publication: Le Système international d'unités (SI), du Bureau international des poids et mesures (BIPM), qui comporte une traduction autorisée en langue an-

<sup>2) 5</sup>e édition, maintenant en révision.

© ISO ISO 1000:1992(F)

#### 3.1 Unités de base

Le Système international d'unités est fondé sur les sept unités de base présentées dans le tableau 1.

Tableau 1 — Unités de base SI

| Constant de base               | Unité de base SI |         |  |  |
|--------------------------------|------------------|---------|--|--|
| Grandeur de base               | Nom              | Symbole |  |  |
| longueur                       | mètre            | m       |  |  |
| masse                          | kilogramme       | kg      |  |  |
| temps                          | seconde          | s       |  |  |
| courant électrique             | ampère           | А       |  |  |
| température<br>thermodynamique | kelvin           | K       |  |  |
| quantité de matière            | mole             | mol     |  |  |
| intensité lumineuse            | candela          | cd      |  |  |

Pour les définitions des unités de base, voir annexe B.

iTeh STANDA

Bien que l'unité cohérente pour l'angle plan et l'angle solide soit le nombre 1, il est commode d'utiliser respectivement les noms spéciaux radian (rad) et stéradian (sr) au lieu du nombre 1 dans de nombreux cas pratiques; par exemple l'unité SI de vitesse angulaire peut être écrite en radian par seconde (rad/s).

Il peut parfois être avantageux d'exprimer les unités dérivées en fonction d'autres unités dérivées, ayant des noms spéciaux; par exemple, l'unité SI de moment de dipôle électrique est habituellement exprimée par C·m au lieu de A·s·m.

#### Multiples des unités SI

Pour former les noms et les symboles des multiples (multiples et sous-multiples décimaux), on utilise les préfixes donnés dans le tableau 4.

On considère que le symbole d'un préfixe est combiné avec le seul symbole de l'unité<sup>3)</sup> à laquelle il est directement attaché, formant ainsi avec lui un nouveau symbole (pour un multiple ou sous-multiple décimal) qu'on peut élever à une puissance positive ou négative et qu'on peut combiner avec d'autres symboles d'unités pour former des symboles d'unités

(standard composées 11) 3.2 Unités dérivées, y compris les unités supplémentaires

EXEMPLES

https://standards.iteh.ai/catalog/standards/sist/9317b890-6a5d-444
Les unités dérivées sont exprimées algébriquement/bb95/iso-1600-1992 = (1 en fonction des unités de base. Leurs symboles sont obtenus en utilisant les signes mathématiques de multiplication et de division; par exemple, l'unité SI de vitesse est le mètre par seconde (m/s).

Pour certaines unités SI dérivées, il existe des noms et des symboles spéciaux; ceux qui sont approuvés par la CGPM sont indiqués dans les tableaux 2 et 3.

Les unités SI radian et stéradian sont appelées unités supplémentaires. Ce sont des unités dérivées «sans dimension» (plus strictement, unités dérivées de dimension un) ayant des noms et symboles spéciaux.

 $1 \, \mu s^{-1}$  $1 \text{ mm}^2/\text{s} = (10^{-3} \text{ m})^2/\text{s}$ 

Les préfixes composés ne doivent pas être employés; par exemple, écrire nm (nanomètre), jamais mum.

Pour des raisons historiques, le nom de l'unité de base pour la masse, kilogramme, contient le nom du préfixe SI «kilo». Les noms des multiples et sous-multiples décimaux de l'unité de masse sont formés par adjonction des préfixes au mot «gramme»; par exemple, milligramme (mg) au lieu de microkilogramme (μkg).

<sup>3)</sup> Dans ce cas, le terme «symbole de l'unité» signifie seulement un symbole pour une unité de base, une unité dérivée avec un nom spécial ou une unité supplémentaire. Voir cependant la note 1 à l'article 4 relative à l'unité de base kilogramme.

Tableau 2 — Unités SI dérivées ayant des noms spéciaux, y compris les unités SI supplémentaires

|                                                              | Unité SI dérivée              |                           |                                                                           |  |
|--------------------------------------------------------------|-------------------------------|---------------------------|---------------------------------------------------------------------------|--|
| Grandeur dérivée                                             | Nom spécial                   | Symbole                   | Expression en fonction des unités SI<br>de base et des unités SI dérivées |  |
| angle plan                                                   | radian                        | rad                       | 1 rad = 1 m/m = 1                                                         |  |
| angle solide                                                 | stéradian                     | sr                        | $1 \text{ sr} = 1 \text{ m}^2/\text{m}^2 = 1$                             |  |
| fréquence                                                    | hertz                         | Hz                        | $1 \text{ Hz} = 1 \text{ s}^{-1}$                                         |  |
| force                                                        | newton                        | N                         | $1 N = 1 kg \cdot m/s^2$                                                  |  |
| pression, contrainte                                         | pascal                        | Pa                        | 1 Pa = 1 N/m <sup>2</sup>                                                 |  |
| énergie,<br>travail,<br>quantité de chaleur                  | joule                         | J                         | 1 J = 1 N · m                                                             |  |
| puissance,<br>flux énergétique                               | watt                          | W                         | 1 W = 1 J/s                                                               |  |
| charge électrique,<br>quantité d'électricité                 | coulomb                       | С                         | 1 C = 1 A·s                                                               |  |
| potentiel électrique,                                        | volt                          | V                         | 1 V = 1 W/A                                                               |  |
| différence de potentiel,<br>tension,<br>force électromotrice | ANDARD                        | PREVIE                    | $\mathbf{W}$                                                              |  |
| capacité électrique                                          | andards.it                    | e <mark>h.ai)</mark>      | 1 F = 1 C/V                                                               |  |
| résistance électrique                                        | ohm <sub>ISO</sub> 1000:1992  | Ω                         | 1 Ω = 1 V/A                                                               |  |
| conductance électrique https://standards.iteh.a              |                               | 2 <b>\$</b> 7b890-6a5d-44 | d7l-Sl⇔l-1 Ω <sup>-1</sup>                                                |  |
| flux d'induction magnétique                                  | ic9cdddbbb95/iso-100<br>weber | 0 <del>.1992</del>        | 1 Wb = 1 V⋅s                                                              |  |
| induction magnétique                                         | tesla                         | Т                         | $1 T = 1 Wb/m^2$                                                          |  |
| inductance                                                   | henry                         | н                         | 1 H ≈ 1 Wb/A                                                              |  |
| température Celsius                                          | degré Celsius1)               | °C                        | 1 °C = 1 K                                                                |  |
| flux lumineux                                                | lumen                         | lm                        | $1 \text{ lm} = 1 \text{ cd} \cdot \text{sr}$                             |  |
| éclairement                                                  | lux                           | lx                        | $1 lx = 1 lm/m^2$                                                         |  |

<sup>1)</sup> Le degré Celsius est un nom spécial pour l'unité kelvin à utiliser pour exprimer des valeurs de température Celsius. (Voir aussi la note 6 relative au kelvin dans l'annexe B.)

Tableau 3 — Unités SI dérivées ayant des noms spéciaux admis pour la sauvegarde de la santé humaine

|                                                                                      |             | Unité SI dérivée |                                                                           |  |  |
|--------------------------------------------------------------------------------------|-------------|------------------|---------------------------------------------------------------------------|--|--|
| Grandeur dérivée                                                                     | Nom spécial | Symbole          | Expression en fonction des unités SI<br>de base et des unités SI dérivées |  |  |
| activité (d'un radionucléide)                                                        | becquerel   | Bq               | $1 \text{ Bq} = 1 \text{ s}^{-1}$                                         |  |  |
| dose absorbée,<br>énergie massique communiquée,<br>kerma,<br>indice de dose absorbée | gray        | Gy               | 1 Gy = 1 J/kg                                                             |  |  |
| équivalent de dose,<br>indice d'équivalent de dose                                   | sievert     | Sv               | 1 Sv = 1 J/kg                                                             |  |  |

Tableau 4 — Préfixes SI

| Tableau 4 — Frenkes Si                                                                            |                                                |                                                          |  |  |  |
|---------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|--|--|--|
| Footour                                                                                           | Pré                                            | Préfixe                                                  |  |  |  |
| Facteur                                                                                           | Nom                                            | Symbole                                                  |  |  |  |
| 10 <sup>24</sup><br>10 <sup>21</sup><br>10 <sup>18</sup><br>10 <sup>15</sup>                      | yotta zetta exa peta                           | Y<br>Can STANI<br>P (stand                               |  |  |  |
| 10 <sup>12</sup><br>10 <sup>9</sup><br>10 <sup>6</sup><br>10 <sup>3</sup>                         | téra<br>giga<br>méga <u>https://st</u><br>kilo | T<br>G <u>I</u><br>an Mards.iteh.ai/catalog<br>k ac9cddd |  |  |  |
| 10 <sup>2</sup><br>10<br>10 <sup>-1</sup><br>10 <sup>-2</sup>                                     | hecto<br>déca<br>déci<br>centi                 | h<br>da<br>d<br>c                                        |  |  |  |
| 10 <sup>-3</sup><br>10 <sup>-6</sup><br>10 <sup>-9</sup><br>10 <sup>-12</sup>                     | milli<br>micro<br>nano<br>pico                 | m<br>μ<br>n<br>p                                         |  |  |  |
| $   \begin{array}{c}     10^{-15} \\     10^{-18} \\     10^{-21} \\     10^{-24}   \end{array} $ | femto<br>atto<br>zepto<br>yocto                | f<br>a<br>z<br>y                                         |  |  |  |

### 5 Utilisation des unités SI et de leurs multiples

**5.1** Le choix d'un multiple approprié (multiple ou sous-multiple décimal) d'une unité SI est régi, avant tout, par la commodité d'emploi qui en résulte. Pour

une application particulière, le multiple choisi sera celui qui conduit à des valeurs numériques ayant un ordre de grandeur qui en facilite l'utilisation.

5.2 Le multiple peut être choisi habituellement de telle sorte que la valeur numérique soit comprise entre 0,1 et 1 000. Parfois, dans le cas d'une unité composée contenant le carré ou le cube d'une unité, un tel choix n'est pas possible.
ardsitental EXEMPLES

30 1000:1992 × 10<sup>4</sup> N peut s'écrire standards/sist/9217b890-6a5d-44d7-94ed-bb95/iso-0,003194 m peut s'écrire 3,94 mm

1 401 Pa peut s'écrire 1,401 kPa

3,1 × 10<sup>-8</sup> s peut s'écrire 31 ns

Cependant, dans un tableau de valeurs concernant la même grandeur ou pour l'examen de telles valeurs dans un contexte donné, il peut généralement être préférable d'employer le même multiple pour toutes les valeurs, même si les valeurs numériques se trouvent en dehors de l'intervalle 0,1 à 1 000. Dans des applications particulières, pour certaines grandeurs, le même multiple est habituellement employé; par exemple, le millimètre est utilisé pour les dimensions dans la plupart des dessins industriels.

- **5.3** Le nombre de préfixes utilisés pour former des unités composées devrait être limité, autant que cela est compatible avec l'usage.
- **5.4** Des erreurs de calcul peuvent être évitées plus facilement si toutes les grandeurs sont exprimées en unités SI, les puissances de 10 étant utilisées à la place des préfixes.

### 6 Règles d'écriture des symboles d'unités

**6.1** Les symboles des unités doivent être imprimés en caractères romains (droits) (quels que soient les caractères utilisés dans le contexte), rester invariables au pluriel, être écrits sans point final sauf en cas de ponctuation normale, par exemple à la fin d'une phrase, et doivent être placés après la valeur numérique complète dans l'expression d'une grandeur, en laissant un espace entre la valeur numérique et le symbole de l'unité.

Les symboles d'unités doivent généralement être imprimés en lettres minuscules; cependant, la première lettre est imprimée en majuscule lorsque le nom de l'unité dérive d'un nom propre.

#### **EXEMPLES**

m mètre

s seconde

A ampère

Wb weber

par exemple, kg/h; km/h. (Voir a iTeh STANDAR lonnes 5 et 6.) IEW

(standards NOTE 4 all'existe quelques autres unités en dehors du SI qui sont reconnues par le CIPM pour utilisation temporaire.

6.2 Quand on forme une unité composée en multi
Plient deux ou plusieurs unités il convient d'india (1801 1000) le marquées par un astérisque (\*)

pliant deux ou plusieurs unités, il convient d'indiqué 1000:160 marquées par un astérisque (\*). cela de l'une des manières suivantes des itela ai/catalog/standards/sist/9217b890-6a5d-44d7-94ed-ac9cdddbbb95/iso-1000-1992

 $N \cdot m$ , N m

NOTES

- 2 Dans les systèmes à nombre limité de caractères, un point sur la ligne est utilisé au lieu d'un point à mi-hauteur.
- 3 On peut aussi écrire la dernière forme sans espace, pourvu qu'on prenne un soin particulier quand le symbole de l'une des unités est le même que le symbole d'un préfixe; par exemple, mN signifie millinewton; non mètre newton.

Quand on forme une unité composée en divisant une unité par une autre, il convient d'indiquer cela de l'une des manières suivantes:

$$\frac{m}{s}$$
, m/s,  $m \cdot s^{-1}$ .

Une barre oblique (/) ne doit pas être suivie par un signe de multiplication ou par un signe de division sur la même ligne, à moins que des parenthèses ne soient ajoutées pour éviter toute ambiguïté. Dans les cas compliqués, les puissances négatives ou les parenthèses doivent être utilisées.

## 7 Unités non SI qui peuvent être utilisées avec les unités SI et leurs multiples

- **7.1** Il y a certaines unités, en dehors du Si qui sont reconnues par le CIPM comme devant être maintenues en usage avec le SI en raison de leur importance pratique (voir tableaux 5 et 6).
- **7.2** Les préfixes donnés dans le tableau 4 peuvent être liés à plusieurs des unités données dans les tableaux 5 et 6; par exemple, millilitre, ml. (Voir aussi annexe A, colonne 6.)
- **7.3** Dans un nombre limité de cas, des unités composées sont formées par les unités données dans les tableaux 5 et 6 avec les unités SI et leurs multiples; par exemple, kg/h; km/h. (Voir aussi annexe A, co-

Tableau 5 — Unités en usage avec le SI

| Grandeur   | Unité   |               |                                     |  |
|------------|---------|---------------|-------------------------------------|--|
| Grandeur   | Nom     | Symbole       | Définition                          |  |
| temps      | minute  | min           | 1 min = 60 s                        |  |
|            | heure   | h             | 1 h = 60 min                        |  |
|            | jour    | d             | 1 d = 24 h                          |  |
| angle plan | degré   | 0             | $1^{\circ} = (\pi/180) \text{ rad}$ |  |
|            | minute  | ,             | 1' = (1/60)°                        |  |
|            | seconde | "             | 1'' = (1/60)'                       |  |
| volume     | litre   | <u>∤,</u> ∟1) | $1 l = 1 dm^3$                      |  |
| masse      | tonne   | t             | $1 t = 10^3 kg$                     |  |

1) Les deux symboles du litre sont équivalents. Cependant, le CIPM effectuera un examen du développement dans l'utilisation des deux symboles, pour la suppression éventuelle de l'un des deux.

Tableau 6 — Unités en usage avec le SI dont la valeur en unités SI est obtenue expérimentalement

|          | Unité                                |         |                                                                                                                                                                          |  |
|----------|--------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Grandeur | Nom                                  | Symbole | Définition                                                                                                                                                               |  |
| énergie  | électronvolt                         | eV      | L'électronvolt est l'énergie cinétique acquise par un électron en traversant une différence de potentiel de 1 volt dans le vide: 1 eV ≈ 1,602 177 × 10 <sup>-19</sup> J. |  |
| masse    | unité de masse<br>atomique (unifiée) | u       | L'unité de masse atomique (unifiée) est égale à 1/12 de la masse d'un atome du nucléide $^{12}$ C: 1 u $\approx$ 1,660 540 $\times$ 10 $^{-27}$ kg.                      |  |

## iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 1000:1992 https://standards.iteh.ai/catalog/standards/sist/9217b890-6a5d-44d7-94ed-ac9cdddbbb95/iso-1000-1992

#### Annexe A

(normative)

### Exemples de multiples et sous-multiples décimaux des unités SI et de quelques autres unités pouvant être utilisées

Pour un certain nombre de grandeurs couramment employées, la présente annexe donne des exemples de multiples et sous-multiples décimaux d'unités SI, ainsi que d'autres unités pouvant être utilisées. On considère que le choix des exemples qui est donné, sans être exhaustif, constituera néanmoins une aide utile sur la manière de présenter les valeurs des grandeurs, d'une façon identique, à l'intérieur de contextes similaires, bien que pouvant appartenir à des domaines technologiques différents. Pour des besoins particuliers (par exemple, pour les sciences et l'enseignement), il est admis qu'une plus grande liberté devra être accordée au choix de multiples et sous-multiples décimaux d'unités SI, choix qui pourra ainsi dépasser le cadre des exemples figurant dans la liste ciaprès.

| Numéro<br>repère<br>dans l'ISO<br>31: 1992 | Grandeur               | Unité SI          | Choix des<br>multiples<br>et des<br>sous-<br>multiples<br>de l'unité | reconnues pa<br>devant être m<br>certains cas,                                                                                       | dehors du SI, or le CIPM comme aintenues et, dans certaines de leurs avec des unités SI  Multiples et sous-multiples données dans la colonne 5 | Remarques et renseignements<br>V concernant les unités utilisées<br>dans des domaines spéciaux                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------|------------------------|-------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                          | 2                      | https://3tandard  |                                                                      | g/standards/sist/9                                                                                                                   |                                                                                                                                                | -94ed- <b>7</b>                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Partie 1: E                                | space et temps         |                   | ac9cdo                                                               | ddbbb95/iso-100                                                                                                                      | 0-1992                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1-1                                        | angle,<br>(angle plan) | rad<br>(radian)   | mrad<br>µrad                                                         | $(degr\acute{e})$ $1^{\circ} = \frac{\pi}{180} \text{ rad}$ $(minute)$ $1' = \frac{1^{\circ}}{60}$ $(seconde)$ $1'' = \frac{1'}{60}$ |                                                                                                                                                | gon [gon (ou grade)],<br>1 gon = $\frac{\pi}{200}$ rad<br>Si le radian n'est pas employé,<br>les unités degré ou gon (grade)<br>peuvent être employées. Les<br>subdivisions décimales du degré<br>sont préférables à la minute et à<br>la seconde pour la plupart des<br>applications. Pour les unités de-<br>gré, minute et seconde pour<br>l'angle plan, il n'y a pas d'espace<br>entre la valeur numérique et le<br>symbole de l'unité. |
| 1-2                                        | angle solide           | sr<br>(stéradian) |                                                                      |                                                                                                                                      |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1-3.1                                      | longueur               | m<br>(mètre)      | km cm mm µm nm pm fm                                                 |                                                                                                                                      |                                                                                                                                                | 1 mille marin* = 1 852 m (exactement)  * Reconnue par le CIPM pour utilisation temporaire.                                                                                                                                                                                                                                                                                                                                                 |