INTERNATIONAL **STANDARD**

ISO 15765-1

> Second edition 2011-10-15

Road vehicles — Diagnostic communication over Controller Area Network (DoCAN) —

Part 1:

General information and use case definition

iTeh STANDARD PREVIEW

Véhicules routiers — Communication de diagnostic sur gestionnaire de
Sréseau de Communication (DoCAN) —

Partie 1: Informations générales et définition de cas d'usage ISO 15765-1:2011

https://standards.iteh.ai/catalog/standards/sist/bb5fb3fa-c7a8-4a99-b413fe422b4462a1/iso-15765-1-2011

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 15765-1:2011 https://standards.iteh.ai/catalog/standards/sist/bb5fb3fa-c7a8-4a99-b413-fe422b4462a1/iso-15765-1-2011

COPYRIGHT PROTECTED DOCUMENT

© ISO 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents Page Foreword iv Introduction v 1 2 Normative references ______1 3 Terms, definitions and abbreviated terms ______1 3.1 Terms and definitions 1 Abbreviated terms1 3.2 4 Conventions 2 Overview of ISO 15765 5 5.1 5.2 Open Systems Interconnection (OSI) model ______2 6 Diagnostic network architecture 4 6.1 Diagnostic network 4 Diagnostic sub-network......4 6.2 Diagnostic gateway......4 6.3 7 7.1 Overview 4 7.2 DoCAN use case clusters ... 8 DoCAN use case definition... 5 8.1 8.2 Use case 2 — Vehicle/ECU software reprogramming 5 8.3

fe422b4462a1/iso-15765-1-2011

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 15765-1 was prepared by Technical Committee ISO/TC 22, *Road vehicles*, Subcommittee SC 3, *Electrical and electronic equipment*.

This second edition cancels and replaces the first edition (ISO 15765-1:2004), which has been technically revised.

ISO 15765 consists of the following parts, under the general title Road vehicles — Diagnostic communication over Controller Area Network (DoCAN): STANDARD PREVIEW

- Part 1: General information and use case definition of sitch ai
- Part 2: Transport protocol and network layer services

ISO 15765-1:2011

— Part 3: Implementation of unified diagnostic services (UDS on CAN) - c7a8-4a99-b413-

fe422b4462a1/iso-15765-1-2011

Part 4: Requirements for emissions-related systems

Introduction

This document set includes the communication between the vehicle's on-board diagnostic (OBD) systems and test equipment implemented across vehicles within the scope of the legislated OBD.

It has been established in order to apply the emissions-related diagnostic services as specified in ISO 15031-5.

To achieve this, it is based on the Open Systems Interconnection (OSI) Basic Reference Model in accordance with ISO/IEC 7498-1 and ISO/IEC 10731, which structure communication systems into seven layers as shown in Table 1.

Table 1 — Enhanced and legislated-OBD diagnostic specifications applicable to the OSI layers

Applicability	OSI 7 layers	Vehicle manufacturer enhanced diagnostics	Legislated OBD (on-board diagnostics)		Legislated WWH-OBD (on-board diagnostics)	
Seven layer according to ISO/IEC 7498-1 and ISO/IEC 10731	Application (layer 7)	ISO 14229-1, ISO 14229-3	ISO 15031-5		ISO 27145-3, ISO 14229-1	
	Presentation (layer 6)	Vehicle manufacturer specific	ISO 15031-2, ISO 15031-5, ISO 15031-6, SAE J1930-DA, SAE J1979-DA, SAE J2012-DA		ISO 27145-2, SAE 1930-DA, SAE J1979-DA, SAE J2012-DA, SAE J1939:2011, Appendix C (SPN), SAE J1939-73:2010, Appendix A (FMI)	
	Session (layer 5) CTANDARD DRF (SO 14229-2)					
	Transport protocol (layer 4) Network (layer 3)	staso castads.	150 15765-2)		ISO 15765-4, ISO 15765-2	
	Data link (layer 2) https://standards. Physical (layer 1)	ISO 11898-1,65-1: ISO 11898-2; teh ai(\$6 11898-3; fe4)\$64189815;0-15 or user defined	sists 25 1 18 3 8 - 1,7	, I	ISO 15765-4, ISO 11898-1, ISO 11898-2	ISO 27145-4

The application layer services covered by ISO 14229-3 have been defined in compliance with diagnostic services established in ISO 14229-1 and ISO 15031-5, but are not limited to use only with them. ISO 14229-3 is also compatible with most diagnostic services defined in national standards or vehicle manufacturer's specifications.

The transport protocol and network layer services covered by this part of ISO 15765 have been defined to be independent of the physical layer implemented, and a physical layer is only specified for legislated OBD.

For other application areas, ISO 15765 can be used with any CAN physical layer.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 15765-1:2011 https://standards.iteh.ai/catalog/standards/sist/bb5fb3fa-c7a8-4a99-b413-fe422b4462a1/iso-15765-1-2011

Road vehicles — Diagnostic communication over Controller Area Network (DoCAN) —

Part 1:

General information and use case definition

1 Scope

This part of ISO 15765 gives an overview of the structure and the partitioning of ISO 15765, and shows the relationships between the different parts. It also defines the diagnostic network architecture. The terminology defined in this part of ISO 15765 is common for all diagnostic networks and is used throughout all parts of ISO 15765.

The diagnostic communication over controller area network (DoCAN) protocol supports the standardized service primitive interface as specified in ISO 14229-2.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 7498-1, Information technology Systems Interconnection — Basic Reference Model: The Basic Model

https://standards.itch.avcatalog/standards/sist/bb5fb3fa-c7a8-4a99-b413
fc422b4462a1/iso-15765-1-2011

3 Terms, definitions and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 7498-1 apply.

3.2 Abbreviated terms

For the purposes of this document, the following abbreviated terms apply.

DoCAN diagnostic communication over controller area network

CAN controller area network

ECU electronic control unit

FMI failure mode indicator

OBD on-board diagnostics

SPN suspect parameter number

WWH-OBD world-wide harmonized on-board diagnostics

4 Conventions

ISO 15765 is based on the conventions discussed in the OSI Service Conventions (ISO/IEC 10731) as they apply for diagnostic services.

5 Overview of ISO 15765

5.1 General

ISO 15765 is applicable to vehicle diagnostic systems implemented on a CAN communication network as specified in ISO 11898.

ISO 15765 has been established in order to define common requirements for vehicle diagnostic systems implemented on a CAN communication link as specified in ISO 11898.

Although primarily intended for diagnostic systems, ISO 15765 has been developed to also meet requirements from other CAN-based systems needing a network layer protocol.

5.2 Open Systems Interconnection (OSI) model

ISO 15765 is based on the Open Systems Interconnection (OSI) Basic Reference Model as specified in ISO/IEC 7498-1 which structures communication systems into seven layers.

All parts of ISO 15765 are guided by the OSI service conventions as specified in ISO/IEC 10731 to the extent that they are applicable to diagnostic services. These conventions define the interaction between the service user and the service provider through service primitives.

(Standards.iteh.ai)

The aim of this subclause is to give an overview of the OSI model and show how it has been used as a guideline for this part of ISO 15765. It also shows how the OSI service conventions have been applied to ISO 15765.

The OSI model structures data communication into seven layers called, from top down, application layer (layer 7), presentation layer (layer 6), session layer (layer 5), transport protocol layer (layer 4), network layer (layer 3), data link layer (layer 2) and physical layer (layer 1).

A subset of these layers is used in ISO 15765, which specifies the application, session, transport protocol, network, data link and physical layers for DoCAN.

The purpose of each layer is to provide services to the layer above. The application layer provides services to the diagnostic application. The active parts of each layer, implemented in software, hardware or any combination of software and hardware, are called *entities*. In the OSI model, communication takes place between entities of the same layer in different nodes. Such communicating entities of the same layer are called *peer entities*.

The services provided by one layer are available at the *Service Access Point* (SAP) of that layer. The layer above can use them by exchanging data parameters.

ISO 15765 distinguishes between the services provided by a layer to the layer above it and the protocol used by the layer to send a message between the peer entities of that layer. The reason for this distinction is to make the services, especially the application layer services and the transport layer services, reusable for CAN and for other network types. In this way, the protocol is hidden from the service user and it is possible to change the protocol if special system requirements demand it.

Figure 1 illustrates the most applicable application implementations utilizing the DoCAN protocol.

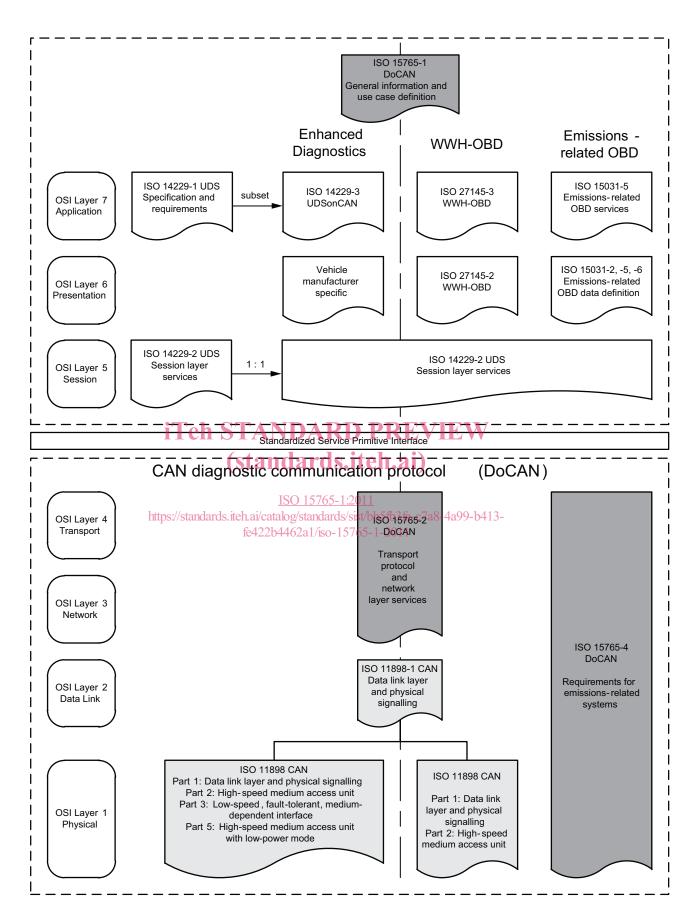


Figure 1 — DoCAN document reference according to the OSI model