NORME INTERNATIONALE INTERNATIONAL STANDARD

Edition 1.1

2003-05

Edition 1:2001 consolidée par l'amendement 1:2002 Edition 1:2001 consolidated with amendment 1:2002

Appareillage à haute tension -

Partie 100: Disjoncteurs à courant alternatif à haute tension

High-voltage switchgear and controlgear -

Part 100: High-yoltage alternating-current circuit-breakers

https://standards.iteh.ai/

ecba-4bce-960e-08ae8692233a/iec-62271-100-2001

Numéro de référence Reference number CEI/IEC 62271-100:2001+A1:2002

Numérotation des publications

Depuis le 1er janvier 1997, les publications de la CEI sont numérotées à partir de 60000. Ainsi, la CEI 34-1 devient la CEI 60034-1.

Editions consolidées

Les versions consolidées de certaines publications de la CEI incorporant les amendements sont disponibles. Par exemple, les numéros d'édition 1.0, 1.1 et 1.2 indiquent respectivement la publication de base, la publication de base incorporant l'amendement 1, et la publication de base incorporant les amendements 1 et 2.

Informations supplémentaires sur les publications de la CEI

Le contenu technique des publications de la CEI est constamment revu par la CEI afin qu'il reflète l'état actuel de la technique. Des renseignements relatifs à cette publication, y compris sa validité, sont disponibles dans le Catalogue des publications de la CEI (voir ci-dessous) en plus des nouvelles éditions, amendements et corrigenda. Des informations sur les sujets à l'étude et l'avancement des travaux entrepris par le comité d'études qui a élaboré cette publication, ainsi que la liste des publications parues, sont également disponibles par l'intermédiaire de:

- Site web de la CEI (www.iec.ch)
- Catalogue des publications de la CEI

Le catalogue en ligne sur le site web de la CE (http://www.iec.ch/searchpub/cur.fut.htm) vous permet de faire des recherches en utilisan de nombreux critères, comprenant des recherches textuelles, par comité d'études ou date de publication. Des

https://sta comité s d'études ou date de publication. Des informations en ligne cont également disponibles sur les nouvelles publications, les publications remplacées ou retirées, ainsi que sur les corrigenda.

IEC Just Published

Ce résumé des dernières publications parues (http://www.iec.ch/orline news/justpub/jp entry.htm) est aussi disponible par courrier électronique. Veuillez prendre contact avec le Service client (voir ci-dessous) pour plus d'informations.

Service clients

Si vous avez des questions au sujet de cette publication ou avez besoin de renseignements supplémentaires, prenez contact avec le Service clients:

Email: <u>custserv@iec.ch</u> Tél: +41 22 919 02 11 Fax: +41 22 919 03 00

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEO, thus ensuring that the content reflects current technology. Information relating to this publication including its validity, is available in the IEO catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

IEC Web Site (www.iec.ch)

Catalogue of IEC publications

The on-line catalogue on the IEC web site (<u>http://www.iec.ch/searchpub/cur fut.htm</u>) enables you to search by a variety of criteria including text searches, technical committees and date of publication. On-line information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

IEC Just Published

This summary of recently issued publications (<u>http://www.iec.ch/online_news/justpub/jp_entry.htm</u>) is also available by email. Please contact the Customer Service Centre (see below) for further information.

Customer Service Centre

If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

Email: <u>custserv@iec.ch</u> Tel: +41 22 919 02 11 Fax: +41 22 919 03 00

NORME INTERNATIONALE INTERNATIONAL STANDARD

CEI IEC 62271-100

Edition 1.1

2003-05

Edition 1:2001 consolidée par l'amendement 1:2002 Edition 1:2001 consolidated with amendment 1:2002

Appareillage à haute tension -

Partie 100: Disjoncteurs à courant alternatif à haute tension

High-voltage switchgear and controlgear -

Part 100: High-voltage alternating-current circuit-breakers

https://standards.iteh.ai/

ecba-4bce-960e-08ae8692233a/iec-62271-100-2001

© IEC 2003 Droits de reproduction réservés — Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия

SOMMAIRE

1	Généralités	
	1.1 Domaine d'application	20
	1.2 Références normatives	20
2	Conditions normales et spéciales de service	24
3	Définitions	24
	3.1 Termes généraux	24
	3.2 Ensembles	
	3.3 Parties d'ensembles	
	3.4 Appareils de connexion	
	3.5 Partie de disjoncteur	
	3.6 Fonctionnement	
	3.7 Grandeurs caractéristiques	
	3.8 Index des définitions	
4	Caractéristiques assignées	62
	4.1 Tension assignée (U _r)	64
	4.2 Niveau d'isolement assigné	64
	4.3 Fréquence assignée (fr)	64
	4.4 Courant assigné en service continu (I_r) et échauffement	66
	4.5 Courant de courte durée admissible assigné (Ik).	66
	4.6 Valeur de crête du courant agmissible assigne (I _p)	66
	4.7 Durée de court-circuit assignée (k)	66
	4.8 Tension assignée d'alimentation des dispositifs de fermeture et d'ouv des circuits auxiliaires et de commande (V _a)	verture, 66
	4.9 Fréquence assignée d'alimentation des dispositifs de fermeture et d'ouverture et des circuits auxiliaires	66
	4.10 Pression assignée d'alimentation en gaz comprimé pour l'isolement, manoeuvre et/ou la coupure	la 66
5	Conception et construction	104
	5.1 Prescriptions pour les liquides utilisés dans les disjoncteurs	104
	5.2 Prescriptions pour les gaz utilisés dans les disjoncteurs	104
	5.3 Raccordement à la terre des disjoncteurs	104
	5.4 Equipements auxiliaires	104
	5.5 Fermeture dépendante à source d'énergie extérieure	
	5.6 Fermeture à accumulation d'énergie	
	5.7 Manœuvre manuelle indépendante	108
	5.8 Fonctionnement des déclencheurs	108
	5.9 Verrouillages à basse et à haute pression	110
	5.10 Plaques signalétiques	
	5.11 Verrouillages	114
	5.12 Indicateur de position	114
	5.13 Degrés de protection procurés par les enveloppes.	

CONTENTS

1	Gene	eral	21
	1.1	Scope	21
	1.2	Normative references	21
2	Norm	nal and special service conditions	25
3	Defin	nitions	25
	3.1	General terms	25
	3.2	Assemblies	31
	3.3	Parts of assemblies	31
	3.4	Switching devices	31
	3.5	Parts of circuit-breakers	
	3.6	Operation	
	3.7	Characteristic quantities	43
	3.8	Index of definitions	55
4	Ratir	ngs	63
	4.1	Rated voltage (U _r)	65
	4.2	Rated insulation level	65
	4.3	Rated frequency (f _r)	65
	4.4	Rated normal current (Ir) and temperature rise	67
	4.5	Rated short-time withstand current Kk	67
	4.6	Rated peak withstand current (Ip)	67
	4.7	Rated duration of short circult (t _k)	67
	4.8	Rated supply voltage of closing and opening devices and of auxiliary and control circuits (V_a) .	67
	4.9	Rated supply frequency of closing and opening devices and auxiliary circuits	s67
	4.10	Rated pressures of compressed gas supply for insulation, operation and/or	
			227167
5	Desi	gn and construction	105
	5.1	Requirements for liquids in circuit-breakers	105
	5.2	Requirements for gases in circuit-breakers	105
	5.3	Earthing of circuit-breakers	105
	5.4	Auxiliary equipment	105
	5.5	Dependent power closing	107
	5.6	Stored energy closing	107
	5.7	Independent manual operation	109
	5.8	Operation of releases	109
	5.9	Low- and high-pressure interlocking devices	111
	5.10	Nameplates	111
	5.11	Interlocking devices	115
	5.12	Position indication	115
	5.13	Degrees of protection by enclosures	115

	5.14 Lignes de fuite	114
	5.15 Etanchéité au gaz et au vide	114
	5.16 Etanchéité au liquide	114
	5.17 Ininflammabilité	114
	5.18 Compatibilité électromagnétique	114
6	Essais de type	118
•	6.1 Généralités	
	6.2 Essais diélectriques	122
	6.3 Essais de tension de perturbation radioélectrique	128
	6.4 Mesurage de la résistance du circuit principal	128
	6.5 Essais d'échauffement	128
	6.6 Essais au courant de courte durée et à la valeur de crête du courant	
	admissible	130
	6.7 Vérification du degré de protection	132
	6.8 Essais d'étanchéité	132
	6.9 Essais de compatibilité électromagnétique	132
	6 101 Essais mécaniques et climatiques	132
	6 102 Dispositions diverses pour les essais d'établissement et de coupure	156
	6 103 Circuite d'assais pour les essais d'établissement et de coupure	100
	en court-circuit	196
	6 104 Caractéristiques pour les essais de courtecircuit	198
	6 105 Procédure d'essai en court-grouit	224
	6 106 Séquences d'essais de court circuit tendamentales	
	6 107 Essais au courant critique	220
	6 109 Essais de défaut monophage au de double défaut à la torra	ZJC
	6.100 Essais de défaut frontophase ou de double defaut à la terre	230
	6. 109 Essais de delau proche en lighe	
	6.110 Essais d'établissement et de coupure en discordance de phases	250
	6.111 Essais d'établissement et de coupure de courants capacitifs	252
	6.112 Exigences spéciales pour les essais de coupure et de fermeture	280
şta		200
	7.1 Faceie d'électriques du sirguit aringinal	202
	7.1 Essais dielectriques du circuite auviliairea et de commande	202
	7.2 Essais delectiques des circuits auxiliaires et de commande	284
		284
		284
	7.5 Controles visuels et du modele	284
3	Guide pour le choix des disjoncteurs selon le service	288
9	Renseignements à donner dans les appels d'offres, les soumissions et les	200
10	Regles pour le transport, le stockage, l'installation, la manœuvre et la maintenance	312
	10.1 Conditions a respecter pendant le transport, le stockage et l'installation	312
	10.2 Installation	312
	10.3 Fonctionnement	324
	10.4 Maintenance	326
	Sácuritá	326

mexe / (normative) · outour des tensions transitoires de retabilissement pour les	
fauts proches en ligne à partir des caractéristiques assignées432	auts proches en
nnexe B (normative) Tolérances sur les paramètres d'essais lors des essais de type448	nexe B (normati [,]
nnexe C (normative) Enregistrement et comptes rendus des essais de type462	nexe C (normati [,]
nnexe D (normative) Détermination du facteur de puissance d'un court-circuit	nexe D (normati [,]

	5.14 Creenage distances	115
	5.14 Oreepage distances	115
	5.15 Gas and vacuum tightness	115
	5.10 Elquid tightness	115
	5.17 Flattinability	115
6		115
0	f ype lesis	119
	0.1 General	123
	6.2 Dielectric tests	123
	6.3 Radio Interference voltage (r.i.v.) tests	129
	6.4 Measurement of the resistance of the main circuit	129
	6.5 Temperature-rise tests	129
	6.6 Short-time withstand current and peak withstand current tests	131
	6.7 Verification of the degree of protection	133
	6.8 lightness tests	133
	6.9 Electromagnetic compatibility (EMC) tests	133
	6.101 Mechanical and environmental tests	133
	6.102 Miscellaneous provisions for making and breaking tests	157
	6.103 Test circuits for short-circuit making and breaking tests	197
	6.104 Short-circuit test quantities	199
	6.105 Short-circuit test procedure	225
	6.106 Basic short-circuit test-duties	229
	6.107 Critical current tests	239
	6.108 Single-phase and double-earth fault tests	239
	6.109 Short-line fault tests	243
	6.110 Out-of-phase making and breaking tests	251
	6.111 Capacitive current switching tests	253
	6.112 Special requirements for making and breaking tests	
_	on class E2 circuit breakers	281
7	Routine tests	283
	7.1 Dielectric test on the main circuit	283)-200
	7.2 Dielectric test on auxiliary and control circuits	285
	7.3 Measurement of the resistance of the main circuit	285
	7.4 Tightness test	285
	7.5 Design and visual checks	285
8	Guide to the selection of circuit-breakers for service	289
9	Information to be given with enquiries, tenders and orders	307
10	Rules for transport, storage, installation, operation and maintenance	313
	10.1 Conditions during transport, storage and installation	313
	10.2 Installation	313
	10.3 Operation	325
	10.4 Maintenance	327
11	Safety	327
An	nex A (normative) Calculation of transient recovery voltages for short-line faults	
fro	m rated characteristics	433
An	nex B (normative) Tolerances on test quantities during type tests	449
An	nex C (normative) Records and reports of type tests	463

Annexe E (normative) Méthode de tracé de l'enveloppe de la tension transitoire de rétablissement présumée d'un circuit et détermination des paramètres représentatifs	474
Annexe F (normative) Méthodes de détermination des ondes de la tension transitoire de rétablissement présumée	482
Annexe G (normative) Raison d'être de l'introduction de disjoncteurs de classe E2 Annexe H (informative) Courants d'appel des batteries de condensateurs simples	516
et à gradins	518
Annexe I (informative) Notes explicatives	528
Annexe J (informative) Tolérances sur le courant d'essai et la longueur de ligne en essai de défaut proche en ligne	562
Annexe K (informative) Liste des symboles et abréviations utilisés dans cette norme	566
Figure 1 – Oscillogramme type d'un cycle d'établissement-coupure en court-circuit triphasé	328
Figure 2 – Disjoncteur sans résistances intercalaires. Manoeuvres d'ouverture	332
Figure 3 – Disjoncteur sans résistance intercalaire – Cycle de fermeture-ouverture	334
Figure 4 – Disjoncteur sans résistance intercalaire – Refermeture (refermeture automatique)	336
Figure 5 – Disjoncteur avec résistances intercalaires Manoenvres d'ouverture	
et de fermeture	338
Figure 6 – Disjoncteur avec résistances intercalaires – Cycle de fermeture-ouverture	340
Figure 7 – Disjoncteur avec résistances intercalaires Referneture	
(refermeture automatique)	342
Figure 8 – Determination des courants de court-circuit établi et coupe	311
Figure 9 – Pourcentage de la composant apériodique en tonction de l'intervalle	
de temps $(T_{op} + T_r)$ pour la constant de temps normale τ_i et pour les constantes	
de temps τ_2 , τ_3 et τ_4 des applications particulières	346
Figure 10 – Représentation d'une TTR spécifiée à quatre paramètres et d'un segment de droite définissant un retard pour les séquences d'essais T100, de défaut proche	
en ligne et en discordance de phases avec un tracé de référence à quatre paramètres	348
Figure 11 - Représentation d'une TTR spécifiée par un tracé de référence 233a/icc-622	71-100-200
à deux paramètres et par un segment de droite définissant un retard	350
Figure 12a – Circuit de pase pour le défault aux bornes avec 11RI	352
Figure 12b – Représentation de la TIRI et de son influence sur la TIR	352
Figure 13 – Representation d'un court-circuit inphase	256
Figure 15 Circuit de base de défaut proche en ligne	250
Figure 16 – Example d'une tension transitoire côté ligne avec un retard et une crête	
arrondie la montrant construction à effectuer pour obtenir les valeurs u^*_{1} , t_{1} et t_{d1} ,	358
Figure 17 – Séquences d'essais pour les essais à basse et à haute température	360
Figure 18 – Essai à l'humidité	362
Figure 19 – Efforts statiques sur les borne	364
Figure 20 – Directions pour les essais d'efforts statiques sur les bornes	366
Figure 21 – Nombre permis de spécimens pour les essais d'établissement	
et de coupure, illustration des spécifications de 6.102.2	368
Figure 22 – Définition d'un essai conformément à 3.2.2 de la CEI 60694	370
Figure 23a – Caractéristique de déplacement mécanique de référence (courbe idéalisée)	372
avec l'enveloppe prescrite centrée autour de la courbe de référence (+5 %, –5 %),	
dans cet exemple la séparation des contacts à lieu à <i>t</i> = 20 ms	372

Annex E (normative) Method of drawing the envelope of the prospective to recovery voltage of a circuit and determining the representative parameter	ansient s475
Annex F (normative) Methods of determining prospective transient recove	ry
voltage waves	483
Annex G (normative) Rationale behind introduction of circuit-breakers clas	s E2517
Annex H (informative) Inrush currents of single and back-to-back capacito	r banks519
Annex I (informative) Explanatory notes	529
Annex J (informative) Test current and line length tolerances for short-line	e fault testing563
Annex K (informative) List of symbols and abbreviations used in IEC 6227	1-100567
Figure 1 – Typical oscillogram of a three-phase short-circuit make-break c	ycle329
Figure 2 – Circuit-breaker without switching resistors. Opening and closing	operations333
Figure 3 – Circuit breaker without switching resistors – Close-open cycle	
Figure 4 – Circuit-breaker without switching resistors – Reclosing (auto-rec	closing)
Figure 5 – Circuit-breaker with switching resistors. Opening and closing of	rerations
Figure 6 – Circuit-breaker with switching resistors – Close-oper cycle	
Figure 7 – Circuit-breaker with switching resistors – Reclosing (auto-reclosed	sing)
Figure 8 – Determination of short-circuit making and breaking currents,	\rightarrow
and of percentage d.c. component	
Figure 9 – Percentage d.c. component in relation to the time interval (T_{op})	$+ T_{\rm r}$) for
the standard time constant τ_1 and for the special case time constants τ_2 , τ_3	$_3$ and τ_4
Figure 10 – Representation of a specified four-parameter TRV and a delay	ine for
Figure 11 Pepresentation of a specified TPV by a two parameter referen	
and a delay line	351
Figure 12a – Basic circuit for terminal fault with ITRV	353
Figure 12b – Representation of LTRV in relationship to TRV	353
Figure 13 – Three-phase short-circuit representation	355
Figure 14 – Alternative representation of figure 13	
Figure 15 – Basic short-line fault circuit	359
Figure 16 – Example of a line-side transport voltage with time delay and ro	unded crest 271-100-200
showing construction to derive the values u^*_{L} , t_{L} and t_{dL}	
Figure 17 – Test sequences for low and high temperature tests	
Figure 18 – Humaidity test	
Figure 19 – Static terminal load forces	
Figure 20 – Directions for static terminal load tests	
Figure 21 – Permitted number of samples for making, breaking and switch	ing tests,
Figure 22 Definition of a single test specimen in accordance with 3.2.2 of	f IEC 60604 371
Figure 22 $-$ Definition of a single test specified in accordance with 5.2.2 0 Figure 23a $-$ Reference mechanical travel characteristics (idealized curve)	272
Figure 23b — Deference mechanical travel characteristics (idealised curve)	
with the prescribed envelopes centered over the reference curve (+5 % -4	5 %)
contact separation in this example at time $t = 20 \text{ ms}$	

Figure 23c – Caractéristique de déplacement mécanique de référence (courbe idéalisée) avec l'enveloppe prescrite déplacée totalement vers la haut par rapport à la courbe de référence (+10 %, -0 %), dans cet exemple la séparation des contacts à lieu à <i>t</i> = 20 ms	374
avec l'enveloppe prescrite déplacée totalement vers la haut par rapport à la courbe de référence (+0 %, -10 %), dans cet exemple la séparation des contacts à lieu à $t = 20$ ms	374
Figure 24 – Montage d'essai éguivalent pour les essais sur éléments séparés	
d'un disjoncteur avant plus d'un élément de coupure	376
Figure 25a – Circuit préferé	378
Figure 25b – Circuit utilisé en variante	
Figure 25 – Mise à la terre des circuits d'essais pour des essais triphasés	
en court-circuit, facteur de premier pôle 1,5	378
Figure 26a – Circuit préferé	380
Figure 26b – Circuit utilisé en variante	
Figure 26 – Mise à la terre des circuits d'essais pour des essais tripnases	380
Eigure 27a Circuit préferé	382
Figure 27a – Circuit utilisé en variante, n'est pas applicable aux disigneteurs dest	
l'isolement entre phases et/ou à la terre est critique (par exemple GIS ou disjoncteurs dead tank)	202
Cierce 27 Miss à la terre des sinsuite d'assess pour des sesses manufactor	
en court-circuit facteur de premier pôle 1.5	382
Figure 28a – Circuit préferé	384
Figure 28b – Circuit utilisé en variante n'est pas applicable aux disjoncteurs dont	
l'isolement entre phases et/ou à la terre est critique (par exemple GIS ou disjoncteurs	
dead tank)	384
Figure 28 – Mise à la terre des circuits d'essais pour des essais monophasés	
en court-circuit, facteur de premier pôle 1,3	384
Figure 29 – Représentation graphique des trois coupures valables sur courants	
symétriques lors d'essais effectués en triphasé pour un réseau à neutre non	
directement à la terre (facteur de premier pôle 1,5)	386
Figure 30 – Représentation graphique des trois coupures valables sur courants	
symetriques lors d'essais enectues en tripnase pour un reseau a neutre mis	200
Figure 21 — Depresentation grantique des treis sources velobles sur sources	
rigure 31 – Representation graphique des trois coupures valables sur courants	
non directement à la terre (facteur de premier pôle 1.5)	390
Figure 32 – Représentation graphique des trois coupures valables sur courants	
asymétriques lors d'essais effectués en triphasé pour un réseau à neutre mis	
directement à la terre (facteur de premier pôle 1,3)	392
Figure 33 – Representation graphique des trois coupures valables sur courants	
symétriques lors d'essais en monophasé effectués en remplacement des conditions	
triphasées dans un réseau à neutre non directement à la terre	
(facteur de premier pôle 1,5)	394
Figure 34 – Représentation graphique des trois coupures valables sur courants	
asymetriques lors à essais en monophase effectues en remplacement des conditions	
(facteur de premier nôle 1.5)	396
Figure 35 – Représentation graphique des trois coupures valables sur courants	
symétriques lors d'essais en monophasé effectués en remplacement des conditions	
triphasées dans un réseau à neutre mis directement à la terre	
(facteur de premier pôle 1,3)	398

Figure 23c – Reference mechanical travel characteristics (idealised curve) with the prescribed envelopes fully displaced upward from the reference curve (+10 %, -0 %), contact separation in this example at time $t = 20$ ms	375	
Figure 23d – Reference mechanical travel characteristics (idealised curve) with		
the prescribed envelopes fully displaced downward from the reference curve $(+0 \%, -10 \%)$, contact separation in this example at time $t = 20 \text{ ms}$	375	
Figure 24 – Equivalent testing set-up for unit testing of circuit-breakers		
with more than one separate interrupter units	377	
Figure 25a – Preferred circuit	379	
Figure 25b – Alternative circuit	379	
Figure 25 – Earthing of test circuits for three-phase short-circuit tests,		
first-pole-to-clear factor 1,5	379	
Figure 26a – Preferred circuit	381	
Figure 26b – Alternative circuit	381	
Figure 26 – Earthing of test circuits for three-phase short-circuit tests,		
first-pole-to-clear factor 1,3	381	
Figure 27a – Preferred circuit	383	
Figure 27b – Alternative circuit not applicable for circuit-breakers where the insulation		
between phases and/or to earth is critical (e.g. GIS or dead tank strutt-breakers)	383	
Figure 27 – Earthing of test circuits for single-phase short-circuit tests,		
first-pole-to-clear factor 1,5	383	
Figure 28a – Preferred circuit	385	
Figure 28b – Alternative circuit, not applicable for circuit-breakers where the insulation	205	
between phases and/or to earth is critical (e.g. GIS or dead tank/circuit-breakers)	385	
Figure 28 – Earthing of test circuits for single-phase short-circuit tests,	385	
Figure 20 Craphical representation of the three validsymmetrical breaking		
operations for three-phase tests in a pop-solidly earthed neutral system		
(first-pole-to-clear factor 1.5).	387	
Figure 30 – Graphical representation of the three valid symmetrical breaking		
operations for three-phase tests in a solidly earthed neutral system		
(first-pole-to-clear factor 1,3).	389	
Figure 31 – Graphical representation of the three valid asymmetrical breaking		
operations for three phase tests in a non-solidly earthed neutral system		
(first-pole-to-clear factor 1,5)	391	
Figure 32 – Graphical representation of the three valid asymmetrical breaking		
(first polo to close tests in a solidly earthed neutral system	303	
Figure 22 Craphical contraction of the three valid symmetrical breaking		
operations for single-phase tests in substitution of three-phase conditions		
in a non-solidly earthed neutral system (first-pole-to-clear factor 1.5)	395	
Figure 34 – Graphical representation of the three valid asymmetrical breaking		
operations for single-phase tests in substitution of three-phase conditions		
in a non-solidly earthed neutral system (first-pole-to-clear factor 1,5)	397	
Figure 35 – Graphical representation of the three valid symmetrical breaking		
operations for single-phase tests in substitution of three-phase conditions		
in a solidly earthed neutral system (first-pole-to-clear factor 1,3)	399	

	Figure 36 – Représentation graphique des trois coupures valables sur courants asymétriques lors d'essais en monophasé effectués en remplacement des conditions triphasées dans un réseau à neutre mis directement à la terre	0
	Figure 37 – Représentation graphique de la fenêtre de coupure et du facteur de tension k_p qui détermine la TTR de chaque pôle, pour des réseaux avec un facteur de premier pôle égal à 1,340)0
	Figure 38 – Représentation graphique de la fenêtre de coupure et du facteur de tension k_p qui détermine la TTR de chaque pôle, pour des réseaux avec un facteur premier pôle égal à 1.5	12
	Figure 39 – Exemple d'une TTR d'essai présumée comportant une enveloppe à quatre paramètres et répondant aux conditions imposées pour l'essai de type – Cas de la TTR spécifiée comportant un tracé de référence à quatre paramètres 40	14
I	Figure 40 – Exemple d'une TTR d'essai présumée comportant une enveloppe à deux paramètres et répondant aux conditions imposées pour l'essai de type, cas de la TTR) A
	Figure 41 – Exemple d'une TTR d'essai présumée comportant une enveloppe à quatre paramètres répondant aux conditions imposées pour l'essai de type –	18
	Figure 42 – Exemple d'une TTR d'essai présumée comportant une enveloppe à deux paramètres répondant aux conditions imposées pour l'essai de type –	0
	Cas de la TTR spécifiée comportant un tracé de référence à quatre paramètres40 Figure 43 – Exemple d'ondes de TTR d'essai présumée et de l'enveloppe)8
	de l'ensemble pour des essais en deux parties	0
	Figure 44 – Détermination de la tension de rétablissement à fréquence industrielle41	2
	Figure 45 – Nécessité d'essais additionpels monophasés et exigences d'essais	4
	Figure 46 – Circuit de base pour les essais de défaut proche en ligne – TTR présumée du circuit type c) selon 6.109.3: côté alimentation et côté ligne avec temps de retard41	16
	Figure 47 – Circuit de base pour les essais de défaut proche en ligne – circuit type d1) selon 6.109.3: côté alimentation avec TTRI et côté ligne avec temps de retard	8
	Figure 48 – Circuit de base pour les essais de défaut proche en ligne – circuit type d2) selon 6.109.3: côte alimentation avec temps de retard et côté ligne sans temps de retard42	20
	Figure 49 – Diagramme de décision pour le choix des circuits d'essais de défaut co-62271-1 proche en ligne	00-200 2 2
	Figure 50 – Compensation d'un défaut du temps de retard côté alimentation par une augmentation de l'amplitude de la tension côté ligne	24
	Figure 51 – Gircuit d'essais pour les essais monophasés en discordance de phases42	26
	Figure 52 – Circuit d'essais avec deux tensions décalées de 120 degrés électriques pour les essais en discordance de phases	26
	Figure 53 – Circuit d'essais avec une borne du disjoncteur à la terre pour les essais	00
	Figure 54 Toppion de rétabliggement pour les agagin de coupure de courante conscitife	20
	Figure A.1 – Graphique typique montrant des paramètres de TTR côté ligne	
	Figure A.2 – Graphique typique montrant les paramètres de TTR côté ligne et alimentation – Les TTR côté ligne et alimentation ont un temps de retard,	10
	la TTR côté alimentation a une TTRI44	16
	Figure E.1 – Représentation par quatre paramètres d'une tension transitoire de rétablissement présumée d'un circuit – Cas du paragraphe E.2. c) 1)	78
	Figure E.2 – Représentation par quatre paramètres d'une tension transitoire	78
	Eigure E 3 – Penrésentation par quatre paramètres d'une tension transiteire	0
	de rétablissement présumée d'un circuit – Cas du paragraphe E.2. c) 3) i)	30

Figure 36 – Graphical representation of the three valid asymmetrical breaking operations for single-phase tests in substitution of three-phase conditions	
in a solidly earthed neutral system (first-pole-to-clear factor 1,3)	01
Figure 37 – Graphical representation of the interrupting window and the voltage factor $k_{\rm D}$,	
determining the TRV of the individual pole, for systems with a first-pole-to-clear factor of 1,340)3
Figure 38 – Graphical representation of the interrupting window and the voltage factor k_{D} ,	
determining the TRV of the individual pole, for systems with a first-pole-to-clear factor of 1,540)3
Figure 39 – Example of prospective test TRV with four-parameter envelope which	
satisfies the conditions to be met during type test – Case of specified TRV	
with four-parameter reference line40)5
Figure 40 – Example of prospective test TRV with two-parameter envelope which	
satisfies the conditions to be met during type test, case of specified TRV	דר
Figure 41 Example of prospective test TPV with four parameter envelope which	1
satisfies the conditions to be met during type-test – Case of specified TRV	
with two-parameter reference line	09
Figure 42 – Example of prospective test TRV with two-parameter envelope which	
satisfies the conditions to be met during type-test – Case of specified RV	
with four-parameter reference line	09
Figure 43 – Example of prospective test TRV-waves and their combined envelope	
in two-part test4	11
Figure 44 – Determination of power frequency recovery voltage4	13
Figure 45 – Necessity of additional single-phase tests and requirements for testing4	15
Figure 46 – Basic circuit arrangement for short-line fault testing and prospective	
TRV-circuit-type a) according to 6.109.3. Source side and the side with time delay4?	17
Figure 47 – Basic circuit arrangement for short-tipe fault testing – circuit type b1)	10
Eigune 49. Desig sizewit and and and the side with time delay	19
according to 6 109 3: Source side with time delay and line side without time delay	21
Figure $49 = \text{Elow-chart for the choice of short line fault test circuits}$	23
Figure $50 - Compensation of deficiency of the source side time delay by an increase$	20
of the excursion of the line side voltage	25
Figure 51 – Test circuit for single-phase out-of-phase tests	20-200
Figure 52 – Test circuit for out of phase tests using two voltages separated	
by 120 electrical degrees	27
Figure 53 – Test circuit for out-of-phase tests with one terminal of the circuit-breaker	
earthed (subject to agreement of the manufacturer)42	29
Figure 54 - Recovery voltage for capacitive current breaking tests	31
Figure A.1 – Typical graph of line and source side TRV parameters –	
Line side and source side with time delay44	17
Figure A.2 – Typical graph of line and source side TRV parameters –	
Line side and source side with time delay, source side with ITRV44	17
Figure E.1– Representation by four parameters of a prospective transient recovery	
voltage of a circuit – Case E.2 c) 1)41	9
Figure E.2 – Representation by four parameters of a prospective transient recovery voltage of a circuit $(2 - 8 - 8 - 2 - 8)$	70
Figure E.3. Performation by four parameters of a prospective transient recovery	3
voltage of a circuit – Case F 2 c) 3) i) 4	31

Figure E.4 – Representation par deux parametres d'une tension transitoire de	
rátablissement présumée d'un circuit – Cas du paragraphe E 2, c) 3) ii)	180
Figure E 1 – Influence de la réduction de la tension sur la valeur de crête de la TTR	-00 502
Figure F $2 - TTR$ pour une coupure idéale	502
Figure F $3 - Coupure avec présence d'une tension d'arc$	504
Figure F 4 – Coupure avec arrachement proponcé du courant	504 504
Figure F 5 – Coupure avec courant post-arc	504
Figure F 6 – Relation entre les valeurs du courant et de la TTR apparaissant lors	001
de l'essai, et les valeurs présumées du réseau	506
Figure F.7 – Schéma de l'appareil d'injection de courant à fréquence industrielle	508
Figure F.8 – Séquence de manœuvres de l'appareil d'injection de courant à fréquence	
industrielle	510
Figure F.9 – Schéma de l'appareillage d'injection par condensateur	512
Figure F.10 – Séquence de manœuvres de l'appareil d'injection par condensateur	514
Figure H.1 – Diagramme du circuit de l'exemple 1	520
Figure H.2 – Diagramme du circuit de l'exemple 2	522
Figure H.3 – Equations pour le calcul des courants d'appel de gradins de condensateurs	526
Figure 1 – Combinaisons des paramètres de court-circuit typiques de aboratoires	
d'essais	552
Tableau 1a – Valeurs normales de la TTR – Tensions assignées inférieurés à 100 kV –	70
Representation par deux parametres	78
rableau 1b – Valeurs normales de la NR – Tensions assignées de 100 kV a 170 kV,	80
Tableau 1c – Valeurs normales de la TIR – Tensions assignées de 100 kV à 170 kV	
cas de réseaux à neutre non directement à la terre – Représentation par quatre paramètres	82
Tableau 1d – Valeurs normales de la TTR – Tensions assignées supérieures	
ou égales à 245 kV, cas de réseaux à neutre directement à la terre -	
Représentation par quatre paramètres	84
Tableau 2 – Valeurs normales des multiplicateurs pour la tension transitoire	
de retablissement pour les 2° et 3 poles à couper à des tensions assignées	- 66)-200
Tableau 3 Valeure normales de la tengion transitoire de rétablissement initiale	00 = 0
Tensions assignées supérieures ou égales à 100 kV	88
Tableau 4 – Valeurs normales des caractéristiques de ligne	
pour les défauts proches en ligne	92
Tableau 5 - Valeurs préférentielles de pouvoir de coupure et de pouvoir	
de fermeture assignés de courants capacitifs	98
Tableau 6 – Indications de la plaque signalétique	112
Tableau 7 – Essais de type	120
Tableau 8 – Nombre de séquences de manœuvres	142
Tableau 9 – Exemples de forces statiques horizontales et verticales pour l'essai	
avec efforts statiques aux bornes	156
Tableau 10 – Valeurs de courant de crête et durée des alternances de courant au cours de	100
Tableau 11 Valoure de sourcet de crête et durées des alternances de sourcet	100
au cours de la période d'arc pour le fonctionnement à 60 Hz - Séquence d'essais	
de court-circuit T100a	190
Tableau 12 – Fenêtre de coupure pour les essais avec courant symétrique	194