INTERNATIONAL ISO/IEC
STANDARD 15938-12

First edition
2008-12-15

AMENDMENT 1
2011-03-01

Information technology — Multimedia
content description interface —

Part 12:
Query format

AMENDMENT 1: Reference software and
flatmetadata cutput

Technologies de l'information — Interface de description du contenu
multimédia —

Partie 12+ Format'dé reqiéte

AMENDEMENT 1: Logicie/ de référence et sortie de métadonnées
plates

Reference number
ISO/IEC 15938-12:2008/Amd.1:2011(E)

© ISO/IEC 2011

ISO/IEC 15938-12:2008/Amd.1:2011(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20

Tel. +4122749 01 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2011 — Al rights reserved

ISO/IEC 15938-12:2008/Amd.1:2011(E)

Foreword

ISO (the International Organization for Standardization) and |IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with 1ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as

an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 1 to ISO/IEC 15938-12:2008 was prepared by Joint Technical Committee ISO/IEC JTC 1,

Information technology; " [Subcommittee [SC 29/ Coding [of Jaudio/ [picture, multimedia and hypermedia
information.

© ISO/IEC 2011 — All rights reserved iii

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 15938-12:2008/Amd 122011
httpsy//standards.iteh.ai/catalog/standards/sist/Oecf2403-034£-46b2-8ad5-
8efc750dbd1c/iso-iec-15938-12-2008-amd- 1-2011

ISO/IEC 15938-12:2008/Amd.1:2011(E)

Information technology — Multimedia content description
interface —

Part 12:
Query format

AMENDMENT 1: Reference software and flat metadata output

In Clause 9, Output Description, 9.2 Syntax, add the highlighted part:

<complexType name="FieldType">
<simpleContent>
<extension base="mpgf:xPathType">
<attribute name="typeName" type="string" use="optional"/>
<attribute name="fromREF" type="IDREF" use="optional"/>
<attribute name="fieldREF" type="IDREF" use="optional"/>
<attribute name="resultMode!" use="optional” default="structured">
<simpleType>
<restriction base="stxring”">
<enumeration value="flat"/>
<enumeration value="structured"/>
</restriction>
</simpleType>
</attribute>
</extension>
</simpleContent>
</complexType>

In Clause 9, Output Description, 9.3 Semantics, add this row at the end of the table

resultMode If set to £1at, specifies the desire that the selected metadata fragment appears in a
FragmentResult element in each result item. If the value of this attribute is not
specified, or is set to structured, the Description element will be used instead
(carrying all the metadata fragments selected by all the RegField elements).

In Clause 9, Output Description, 9.3 Semantics, replace this row:

RegField Describes a data path within the item’s metadata, which a requester asks
to be returned. Paths are specified by making use of absolute XPath
expressions, which refer to the root of the item’s metadata, or optionally
using relative XPath expressions referred to a given schema’s complex

type.

© ISO/IEC 2011 — All rights reserved 1

ISO/IEC 15938-12:2008/Amd.1:2011(E)

with:

ReqgField Describes a data path within the item’s metadata, which a requester
asks to be returned. Paths are specified by making use of relative XPath
expressions, which refer to the root of the evaluation item’s metadata
(the one specified by the EvaluationPath element), or optionally
using absolute XPath expressions referred to the root of the multimedia
content’s metadata (to which the evaluation item belongs). Depending
on the value of the resultMode attribute, the resulting metadata
fragments of the different ReqField elements will appear in several
ResultField elements or within a single Description element (or
two if a Join operation is used).

In Clause 9, Output Description, 9.4 Example, add the following example at the end (after the current
example):

This second example illustrates the use of resultMode attribute set to “f1lat” to obtain a flat metadata
output. In this example, a simple free text query is specified which searches for textual descriptions containing
“San Jose”. In addition, the target domain is limited to images of the JPEG format. The OutputDescription
element is used to select two fields from the metadata of the resulting digital items (width and height of the
image), with the resul tMode attribute set to “flat”.

<MpegQuery mpgfID="someID">
<Query>
<Input>
<OutputDescription maxItemCount="30} maxPageEntries="10" freeTextUse="true"
outputNameSpace="urn:mpeg:mpeg7:schema:2004" >
<RegField typeName="width"
resultMode="flat">MediaInformation/MediaProfile/MediaFormat /VisualCoding/Frame/@w
idth</RegField>
<RegField typeName="height"
resultMode="flat">MediaInformation/MediaProfile/MediaFormat/VisualCoding/Frame/@h
eight</RegField>
</OutputDescription>
<QueryCondition>
<TargetMediaType xsi:type="mimeType">image/jpeg</TargetMediaType>
<Condition xsi:type="QueryByFreeText">
<FreeText>San Jose</FreeText>
</Condition>
</QueryCondition>
</Input>
</Query>
</MpegQuery>

The following is the example of an expected output by the specified OutputDescription above.

<MpegQuery>
<Query>
<Output currPage="1" totalPages="1" expirationDate="2008-05-30T09:00:00">

<ResultItem xsi:type="ResultItemType" recordNumber="1">
<TextResult>Title 0l</TextResult>
<mpgf :FragmentResult name="width">640</mpgf :FragmentResult>
<mpgf : FragmentResult name="height">480</mpgf:FragmentResult>

</ResultItem>

<ResultItem recordNumber="2">
<TextResult>Title 02</TextResult>
<mpqgf :FragmentResult name="width">320</mpgf:FragmentResult>

2 © ISO/IEC 2011 — All rights reserved

ISO/IEC 15938-12:2008/Amd.1:2011(E)

<mpgf : FragmentResult name="height">200</mpgf :FragmentResult>
</ResultItem>
<ResultItem recordNumber="3">
<TextResult>Title 03</TextResult>
<mpgf : FragmentResult name="width">800</mpgf : FragmentResult>
<mpgf :FragmentResult name="height">1000</mpgf:FragmentResult>
</ResultItem>
</Output>
</Query>
</MpegQuery>

In 13.2, Resultltem, 13.2.2 Syntax, add the highlighted part:

<complexType name="ResultItemBaseType" abstract="true"/>
<complexType name="ResultItemType">
<complexContent>
<extension base="mpgf:ResultItemBaseType">
<sequence>
<element name="Comment" minOccurs="0" maxOccurs="2">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="fromREF" type="string" use="optional"/>
</extension>
</simpleContent>
</complexType>
</element>
<!-- Need for comment for each individual item should be cleared. -->
<!-- One use case can be.for each, individual responder to identify the
origin of the. result, . —->
<element name="TextResult" .minOccurs="0" maxOccurs="2">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="fromREF" type="string" use="optional"/>
</extension>
</simpleContent>
</complexType>
</element>
<element name="Thumbnail" minOccurs="0" maxOccurs="2">
<complexType>
<simpleContent>
<extension base="anyURI">
<attribute name="fromREF" type="string" use="optional"/>
</extension>
</simpleContent>
</complexType>
</element>
<element name="MediaResource" minOccurs="0" maxOccurs="2">
<complexType>
<simpleContent>
<extension base="anyURI">
<attribute name="fromREF" type="string" use="optional"/>
</extension>
</simpleContent>
</complexType>
</element>

© ISO/IEC 2011 — All rights reserved 3

ISO/IEC 15938-12:2008/Amd.1:2011(E)

<!-- The media resource 1is expected to lead the customer to the
location
of the actual full size media. -->
<element name="Description" minOccurs="0" maxOccurs="2">
<complexType mixed="true">
<sequence>
<any namespace="##any" processContents="strict"
maxOccurs="unbounded" />
</sequence>
<attribute name="fromREF" type="string" use="optional"/>
</complexType>
</element>
<!-- If you want to return embedded in-line media, you should use the

Description. For example, you should instantiate a mpeg7:MediaLocator with inline
media -->
<element name="AggregationResult" minOccurs="0" maxOccurs="unbounded">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="aggregateID" type="string" use="required"/>
</extension>
<!-- This aggregateID is given in the Aggregate element
of the Input Query. -->
</simpleContent>
</complexType>
</element>
<element name="FragmentResult" minOccurs="0" maxOccurs="unbounded">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="name" type=“string“ use="required"/>
<attribute name="fromREF" type="string" use="optional"/>
</extension> :
</simpleContent>
</complexType>
</element>
<!-- elements with names of each aggregate expression -->
</sequence>
<attribute name="recordNumber" type="positiveInteger" use="required"/>
<attribute name="rank" type="positivelInteger" use="optional"/>
<attribute name="confidence" type="mpqgf:zeroToOneType" use="optional"/>
<attribute name="originID" type="anyURI" use="optional"/>

<!-- Can contain the serviceID or URL of the responder responding to the
Input
Query, when there are multiple services responding to the single request. -->
</extension>
</complexContent>
</complexType>

In 13.2, Resultltem, 13.2.3 Semantics, add this row at the end of the table:

FragmentResult Contains a metadata fragment selected by a RegField element in the output
description of the input query in a flat string form. It may be just a number like “65”, or
XML data which is packed as CDATA. It is an alternative way to the Description
element to get selected metadata from the result items.

4 © ISO/IEC 2011 — All rights reserved

ISO/IEC 15938-12:2008/Amd.1:2011(E)

After Clause 14, Query Management Tools, add the following:

15 MPEG Query Format Reference Software

15.1 Introduction

The following Subclauses describe reference software for the normative clauses of this Part of
ISO/IEC 15938. The information provided is applicable for determining the reference software modules
available for this Part of ISO/IEC 15938, understanding the functionality of the available reference software
modules, and utilizing the available reference software modules.

In addition to the reference software, available (integrated) utility software that utilizes the reference software

is also described. This utility software can assist in understanding how to utilize the reference software, as
well as providing further insight into this Part of ISO/IEC 15938, e.g. informative Clauses.

15.2 MPQF Reference Software specific terms, definitions and conventions
15.2.1 Terms, definitions, symbols and abbreviated terms

15.2.1.1 module

software component implementing reference software or utility software

15.2.1.2 reference software

one or more modules utilizing normative parts of this Part of ISO/IEC 15938

15.2.1.3 utility software

one or more modules utilizing informative parts of this Part of ISO/IEC 15938 and/or the usage of reference
software within real-world applications

15.2.2 Conventions

In the remainder of this Clause, each reference and utility software module is described following the
convention as below:

Name of the ZIP file with the following structure:
/<directory>/<module_name>-<implementation>-<version>.zip

<directory>: directory name in which the module can be found 15938-12
L2 RS <module_name>: name of the module, e.g., Parser, Validator, etc.
<implementation>: letter A, B, C, etc. for different implementations.

<version>: version number, i.e., n_n_n|n_n|n

Description Describes the functionality the module provides.
INPUT Describes the input of the module.
OUTPUT Describes the output of the module.

© ISO/IEC 2011 — All rights reserved 5

ISO/IEC 15938-12:2008/Amd.1:2011(E)

Programming

Language(s) Lists the programming language(s) in which the module is written.

Lists the platforms the module has been tested on and is supposed to run

Platform(s) on

Dependencies Lists the required libraries and code with version information.

Lists any implementation details, such as architecture diagrams and data

Details
flows.

15.3 Overview of the architecture of the 15938-12 reference software

\

NI

MPQF
internal
representation

MPEG Query
XML instance

A

7

output MPQF resultset Vi

W input content XML metadata /,/f;ﬁ/? 4
oncmenia) %/////%

Figure 5 — Reference/utility software architecture

The architecture (see Figure 5) of the Reference Software is divided in three different software modules, the
MPQF Validator, the MPQF Parser and the MPQF Basic Interpreter. These software modules are defined in a
composite way, the Basic Interpreter makes use of the Parser and the Parser makes use of the Validator.

The MPQF Validator first checks the XML well-formedness and validity of an MPQF input/output query
according to the rules of XML 1.1 and the MPQF XML schema. Secondly, the Validator checks if the input or
output query is compliant with the rules described in this part of ISO/IEC 15938 which cannot be enforced with
the XML schema.

Once the Validator has checked the validity of the MPQF query, the MPQF Parser translates this XML

instance into a Java object provided with methods for accessing and modifying the different parts of the query.
This Java object is the output of the Validator.

6 © ISO/IEC 2011 — All rights reserved

ISO/IEC 15938-12:2008/Amd.1:2011(E)

The MPQF Basic Interpreter module receives from the Parser a Java object representing a query and also an
input XML file containing MPEG-7 metadata about a collection of images. However, note that MPQF is
metadata aqgnostic and any other metadata format can be used in combination with the query format. The
Basic Interpreter will evaluate the query and will return another Java object representing the response (an
output query). This object is then passed to the Parser who will translate it to an XML output MPQF instance.

This Part of ISO/IEC 15938 comprises reference software modules. The following table summarizes the
modules:

MPQF Validator |- XML well-formedness and schema validity

-Validation according to the MPQF specification

MPQF Parser -Parsing an MPQF instance into its internal data structure
-Serializing the internal data structure to a valid MPQF instance
Basic Interpreter | Basic queries without query types

15.4 MPQF Validator

Module name /15938-12/MPQF _Parser-1_0_0.zip
. - XML well-formedness and schema validity
Description 1
- Validation according tojthe MPQF specification.
INPUT An MPQF query; URI of the profile used (default = no profile).
hitps S Well “formed, “not 'well “formed ™ * “reasons why, valid, not valid +
reasons why (according to the MPQF XML schema)
OUTPUT

- Valid, not valid + reasons why (according to the MPQF
specification)

FCETIT, Java version 1.5 or higher

Language(s)

Platform(s) Any platform that supports the programming language
Dependencies None

Details -

15.4.1 MPQF Validator Framework

The MPQF validator provides an extensible module based framework which allows an independent
development and assembly of verification components. Verification components can be divided into two main
groups: syntactic and semantic verification. Syntactic verification deals with the evaluation of XML documents
according to the following two characteristics: well-formed and valid. A XML document is well-formed if it
obeys the syntax of XML. Furthermore, a XML document is valid if it obeys the syntax of the underlying XML
Schema. Related to the MPQF validator, a MPQF query is syntactical correct if it is well-formed and valid
according to the MPQF XML Schema.

© ISO/IEC 2011 — All rights reserved 7

ISO/IEC 15938-12:2008/Amd.1:2011(E)

Semantic verification deals with the evaluation of rules that are not expressed by syntactic means within the
XML Schema. For instance, a query may be valid for one multimedia retrieval service (MMRS) but invalid for
another one. In series, this can depend on different capabilities the individual MMRS support (e.g., different
query types are supported). Another semantic rule emerges in combination with internal references between
resources and query types. There are query types which reference to resources at the declaration level in
order to increase the reuse of components. However, specific query types are only allowed to point to specific
resources. This must be evaluated by the MPQF validator.

In order to support an extensible approach at the best, Figure 6 presents the internal workflow of the system.
Whenever an instance of the validator is created a corresponding validation chain is instantiated. A validation
chain consists of a set of validation modules which are selected for the individual validation process. An
overview of currently available validation modules is presented in 15.4.4.

The validation process evaluates the incoming MPQF query by traversing the validation chain step by step.
During this process every validation module verifies the query according to their specific rules (syntactic or
semantic). In case of an error, the validation stops and the respective error message is returned.

MPQF Query Vag;'a_“""
ain
A 4
Validation
Module A
‘ A 4
Validation
Module B

!

NO Validation
Module N

M g

Figure 6 — Workflow of the MPQF validator

YES
YES
YES

15.4.2 Class Hierarchy
Figure 7 demonstrates the class hierarchy of the MPQF validator, where in general three different parts can

be distinguished: public classes, validation modules and internal package. In the following, the individual parts
are explained in more detail.

8 © ISO/IEC 2011 — All rights reserved

	²ÌC„�-:ü¬+ÐšÞ!u˝þ
à�Öï™¥Æ˛Gó−ßPi€mDU@�rõ|³_äM˜�ê˘�{wH§Ò�	™e{¾Ôõì\8m6�#‚¤4?�P;½ê:¥}� ˆ{�ð5`š4�_°dz7�ºô8�;ý¸€†TA�łåCýž�˜�5=Wó�º˙²‰�rí%Js˘Ê

